Zero-divisor graph of C(X)

被引:21
|
作者
Azarpanah, F [1 ]
Motamedi, M
机构
[1] Chamran Univ, Dept Math, Ahvaz, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
关键词
cycle; socle; triangulated and hypertriangulated; clique number; cellularity and dominating number;
D O I
10.1007/s10474-005-0205-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article the zero-divisor graph Gamma(C(X)) of the ring C(X) is studied. We associate the ring properties of C(X), the graph properties of Gamma(C(X)) and the topological properties of X. Cycles in Gamma(C(X)) are investigated and an algebraic and a topological characterization is given for the graph Gamma(c(x)) to be triangulated or hypertriangulated. We have shown that the clique number of Gamma(C(X)), the cellularity of X and the Goldie dimension of C(X) coincide. It turns out that the dominating number of Gamma(C(X)) is between the density and the weight of X. Finally we have shown that Gamma(C(X)) is not triangulated and the set of centers of Gamma(C(X)) is a dominating set if and only if the set of isolated points of X is dense in X if and only if the socle of C(X) is an essential ideal.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [1] Zero-divisor graph of C(X)
    F. Azarpanah
    M. Motamedi
    Acta Mathematica Hungarica, 2005, 108 : 25 - 36
  • [2] The Zero-divisor Graph of Zn[X]]
    Park, Min Ji
    Kim, Eun Sup
    Lim, Jung Wook
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (04): : 723 - 729
  • [3] Zero-Divisor Graph of the Rings CP(X) and C∞P(X)
    Acharyya, Sudip Kumar
    Ray, Atasi Deb
    Nandi, Pratip
    FILOMAT, 2022, 36 (15) : 5029 - 5046
  • [4] The Zero-Divisor Graph of a Lattice
    E. Estaji
    K. Khashyarmanesh
    Results in Mathematics, 2012, 61 : 1 - 11
  • [5] The Zero-Divisor Graph of a Lattice
    Estaji, Ehsan
    Khashyarmanesh, Kazem
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 1 - 11
  • [6] GENERALIZATIONS OF THE ZERO-DIVISOR GRAPH
    Anderson, David F.
    McClurkin, Grace
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 237 - 262
  • [7] On the zero-divisor graph of a ring
    Anderson, David F.
    Badawi, Ayman
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 3073 - 3092
  • [8] Strong resolving graph of a zero-divisor graph
    Nikandish, R.
    Nikmehr, M. J.
    Bakhtyiari, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [9] The zero-divisor graph of an amalgamated algebra
    Y. Azimi
    M. R. Doustimehr
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1213 - 1225
  • [10] The zero-divisor graph of a commutative semigroup
    F. R. DeMeyer
    T. McKenzie
    K. Schneider
    Semigroup Forum, 2002, 65 : 206 - 214