exFINDER: identify external communication signals using single-cell transcriptomics data

被引:3
|
作者
He, Changhan [1 ]
Zhou, Peijie [1 ]
Nie, Qing [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Cell & Dev Biol, Irvine, CA 92697 USA
关键词
GENE-EXPRESSION; MOUSE DEVELOPMENT; FATE DECISIONS; LIGANDS;
D O I
10.1093/nar/gkad262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell-cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
引用
收藏
页码:E58 / E58
页数:16
相关论文
共 50 条
  • [41] Spatial transcriptomics deconvolution at single-cell resolution using Redeconve
    Zixiang Zhou
    Yunshan Zhong
    Zemin Zhang
    Xianwen Ren
    Nature Communications, 14
  • [42] Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis
    Coulis, Gerald
    Jaime, Diego
    Guerrero-Juarez, Christian
    Kastenschmidt, Jenna M. M.
    Farahat, Philip K. K.
    Nguyen, Quy
    Pervolarakis, Nicholas
    McLinden, Katherine
    Thurlow, Lauren
    Movahedi, Saba
    Hughes, Brandon S. S.
    Duarte, Jorge
    Sorn, Andrew
    Montoya, Elizabeth
    Mozaffar, Izza
    Dragan, Morgan
    Othy, Shivashankar
    Joshi, Trupti
    Hans, Chetan P. P.
    Kimonis, Virginia
    MacLean, Adam L. L.
    Nie, Qing
    Wallace, Lindsay M. M.
    Harper, Scott Q. Q.
    Mozaffar, Tahseen
    Hogarth, Marshall W. W.
    Bhattacharya, Surajit
    Jaiswal, Jyoti K. K.
    Golann, David R. R.
    Su, Qi
    Kessenbrock, Kai
    Stec, Michael
    Spencer, Melissa J. J.
    Zamudio, Jesse R. R.
    Villalta, S. Armando
    SCIENCE ADVANCES, 2023, 9 (27)
  • [43] Single-cell transcriptomics identify vasculature-associated inflammatory networks in the CNS of EAE
    Tastet, O.
    Fournier, A.
    Charabati, M.
    Bourbonniere, L.
    Zandee, S.
    Larouche, S.
    Klement, W.
    Tea, F.
    Filali, A.
    Larochelle, C.
    Arbour, N.
    Prat, A.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (1_SUPPL) : 196 - 196
  • [44] Taking single-cell transcriptomics to the bedside
    Behjati, Sam
    Haniffa, Muzlifah
    NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (10) : 590 - U20
  • [45] Dissecting intercellular communication in adult human skin with single-cell and spatial transcriptomics
    Ji, A.
    Thrane, K.
    Guo, M.
    Rubin, A.
    Kim, D.
    Hollmig, T.
    Aasi, S.
    Lundeberg, J.
    Khavari, P.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2021, 141 (05) : S17 - S17
  • [46] The art of using t-SNE for single-cell transcriptomics
    Kobak, Dmitry
    Berens, Philipp
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [47] The art of using t-SNE for single-cell transcriptomics
    Dmitry Kobak
    Philipp Berens
    Nature Communications, 10
  • [48] Single-cell transcriptomics for microbial eukaryotes
    Kolisko, Martin
    Boscaro, Vittorio
    Burki, Fabien
    Lynn, Denis H.
    Keeling, Patrick J.
    CURRENT BIOLOGY, 2014, 24 (22) : R1081 - R1082
  • [49] Exploring the Complexity of Cortical Development Using Single-Cell Transcriptomics
    Jeong, Hyobin
    Tiwari, Vijay K.
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [50] Bead capture for single-cell transcriptomics
    Darren J. Burgess
    Nature Reviews Genetics, 2015, 16 : 195 - 195