A Jacobi spectral method for calculating fractional derivative based on mollification regularization

被引:2
|
作者
Zhang, Wen [1 ]
Wu, Changxing [1 ]
Ruan, Zhousheng [1 ]
Qiu, Shufang [1 ,2 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional derivative; Jacobi collocation; mollification; Gaussian quadrature; APPROXIMATIONS; INTERPOLATION; EQUATION;
D O I
10.3233/ASY-231869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct a Jacobi spectral collocation scheme to approximate the Caputo fractional derivative based on Jacobi-Gauss quadrature. The convergence analysis is provided in anisotropic Jacobi-weighted Sobolev spaces. Furthermore, the convergence rate is presented for solving Caputo fractional derivative with noisy data by invoking the mollification regularization method. Lastly, numerical examples illustrate the effectiveness and stability of the proposed method.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 50 条
  • [1] Regularization of the Time-Fractional Order SchröDinger Problem by Using the Mollification Regularization Method
    Yang, Lan
    Zhu, Lin
    He, Shangqin
    Zhao, Bingxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6799 - 6817
  • [2] A mollification regularization method for unknown source in time-fractional diffusion equation
    Yang, Fan
    Fu, Chu-Li
    Li, Xiao-Xiao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (07) : 1516 - 1534
  • [3] A Mollification Regularization Method for a Fractional-Diffusion Inverse Heat Conduction Problem
    Deng, Zhi-Liang
    Yang, Xiao-Mei
    Feng, Xiao-Li
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [4] A Mollification Regularization Method for the Inverse Source Problem for a Time Fractional Diffusion Equation
    Le Dinh Long
    Yong Zhou
    Tran Thanh Binh
    Nguyen Can
    MATHEMATICS, 2019, 7 (11)
  • [5] A mollification regularization method for stable analytic continuation
    Deng, Zhi-Liang
    Fu, Chu-Li
    Feng, Xiao-Li
    Zhang, Yuan-Xiang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (08) : 1593 - 1608
  • [6] Regularization of a nonlinear inverse problem by discrete mollification method
    Bodaghi, Soheila
    Zakeri, Ali
    Amiraslani, Amir
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (01): : 313 - 326
  • [7] A sigmoidal fractional derivative for regularization
    Rezapour, Mostafa
    Sijuwade, Adebowale
    Asaki, Thomas J.
    AIMS MATHEMATICS, 2020, 5 (04): : 3284 - 3297
  • [8] Fractional Derivative Regularization in OFT
    Tarasov, Vasily E.
    ADVANCES IN HIGH ENERGY PHYSICS, 2018, 2018
  • [9] A Tikhonov-type regularization method for Caputo fractional derivative
    Duc, Nguyen Van
    Nguyen, Thi-Phong
    Ha, Nguyen Phuong
    Anh, Nguyen The
    Manh, Luu Duc
    Bao, Hoang Cong Gia
    NUMERICAL ALGORITHMS, 2024, : 441 - 462
  • [10] A spectral framework for fractional variational problems based on fractional Jacobi functions
    Zaky, M. A.
    Doha, E. H.
    Tenreiro Machado, J. A.
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 51 - 72