A Jacobi spectral method for calculating fractional derivative based on mollification regularization

被引:2
|
作者
Zhang, Wen [1 ]
Wu, Changxing [1 ]
Ruan, Zhousheng [1 ]
Qiu, Shufang [1 ,2 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Guangzhou Maritime Univ, Dept Basic Courses, Guangzhou 510725, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional derivative; Jacobi collocation; mollification; Gaussian quadrature; APPROXIMATIONS; INTERPOLATION; EQUATION;
D O I
10.3233/ASY-231869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct a Jacobi spectral collocation scheme to approximate the Caputo fractional derivative based on Jacobi-Gauss quadrature. The convergence analysis is provided in anisotropic Jacobi-weighted Sobolev spaces. Furthermore, the convergence rate is presented for solving Caputo fractional derivative with noisy data by invoking the mollification regularization method. Lastly, numerical examples illustrate the effectiveness and stability of the proposed method.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 50 条
  • [21] Jacobi spectral collocation method for solving fractional pantograph delay differential equations
    Yang, Changqing
    Hou, Jianhua
    Lv, Xiaoguang
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 1985 - 1994
  • [22] An indirect convergent Jacobi spectral collocation method for fractional optimal control problems
    Yang, Yin
    Zhang, Jiaqi
    Liu, Huan
    Vasilev, Aleksandr O.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2806 - 2824
  • [23] Jacobi spectral method for the fractional reaction-diffusion equation arising in ecology
    Singh, Harendra
    Pathak, Ramta Ram
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5031 - 5045
  • [24] A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations
    Qingqing Wu
    Zhongshu Wu
    Xiaoyan Zeng
    Communications on Applied Mathematics and Computation, 2021, 3 : 509 - 526
  • [25] A Mollification Method for Backward Time-Fractional Heat Equation
    Van Duc, Nguyen
    Muoi, Pham Quy
    Van Thang, Nguyen
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (03) : 749 - 766
  • [26] A mollification regularization method for identifying the time-dependent heat source problem
    Fan Yang
    Chu-Li Fu
    Xiao-Xiao Li
    Journal of Engineering Mathematics, 2016, 100 : 67 - 80
  • [27] A fully discrete spectral method for fractional Cattaneo equation based on Caputo-Fabrizo derivative
    Li, Haonan
    Lu, Shujuan
    Xu, Tao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 936 - 954
  • [28] Spectral regularization method for the time fractional inverse advection-dispersion equation
    Zheng, G. H.
    Wei, T.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (01) : 37 - 51
  • [29] Spectral regularization method for solving a time-fractional inverse diffusion problem
    Zheng, G. H.
    Wei, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) : 396 - 405
  • [30] A simple method to extract spectral parameters using fractional derivative spectrometry
    Kharintsev, SS
    Salakhov, MK
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (8-9) : 2125 - 2133