A mollification regularization method for unknown source in time-fractional diffusion equation

被引:29
|
作者
Yang, Fan [1 ,2 ]
Fu, Chu-Li [2 ]
Li, Xiao-Xiao [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Sch Math & Stat, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
time-dependent heat source; time-fractional diffusion equation; modified regularization; a posteriori parameter choice; error estimate; DEPENDENT HEAT-SOURCE; INVERSE SOURCE PROBLEM; SOURCE-TERM; CONDITIONAL STABILITY; ANOMALOUS DIFFUSION;
D O I
10.1080/00207160.2013.851787
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider an inverse source problem for a fractional diffusion equation. This problem is ill-posed, i.e. the solution (if it exists) does not depend continuously on the data. We give the mollification regularization method to solve this problem. An a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, a new a posteriori parameter choice rule is also proposed and a good error estimate is also obtained. Numerical examples are presented to illustrate the validity and effectiveness of this method.
引用
收藏
页码:1516 / 1534
页数:19
相关论文
共 50 条
  • [1] Identification and regularization for unknown source for a time-fractional diffusion equation
    Nguyen Huy Tuan
    Kirane, Mokhtar
    Luu Vu Cam Hoan
    Le Dinh Long
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 931 - 950
  • [2] A Mollification Regularization Method for the Inverse Source Problem for a Time Fractional Diffusion Equation
    Le Dinh Long
    Yong Zhou
    Tran Thanh Binh
    Nguyen Can
    [J]. MATHEMATICS, 2019, 7 (11)
  • [3] Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation
    Fan Yang
    Xiao Liu
    Xiao-Xiao Li
    Cheng-Ye Ma
    [J]. Advances in Difference Equations, 2017
  • [4] Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation
    Yang, Fan
    Liu, Xiao
    Li, Xiao-Xiao
    Ma, Cheng-Ye
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [5] TWO REGULARIZATION METHODS FOR IDENTIFYING THE UNKNOWN SOURCE IN A MULTITERM TIME-FRACTIONAL DIFFUSION EQUATION
    Chang, Maoli
    Sun, Liangliang
    Wang, Yuxin
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (05) : 1387 - 1414
  • [6] Identifying an unknown source in time-fractional diffusion equation by a truncation method
    Zhang, Z. Q.
    Wei, T.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) : 5972 - 5983
  • [7] Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem
    Yang, Fan
    Fu, Jun-Liang
    Fan, Ping
    Li, Xiao-Xiao
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2021, 175 (01)
  • [8] Fractional Landweber Iterative Regularization Method for Identifying the Unknown Source of the Time-Fractional Diffusion Problem
    Fan Yang
    Jun-Liang Fu
    Ping Fan
    Xiao-Xiao Li
    [J]. Acta Applicandae Mathematicae, 2021, 175
  • [9] A Mollification Method for Backward Time-Fractional Heat Equation
    Nguyen Van Duc
    Pham Quy Muoi
    Nguyen Van Thang
    [J]. Acta Mathematica Vietnamica, 2020, 45 : 749 - 766
  • [10] A Mollification Method for Backward Time-Fractional Heat Equation
    Van Duc, Nguyen
    Muoi, Pham Quy
    Van Thang, Nguyen
    [J]. ACTA MATHEMATICA VIETNAMICA, 2020, 45 (03) : 749 - 766