Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning

被引:16
|
作者
Qin, Haosen [1 ]
Yu, Zhen [2 ]
Li, Tailu [1 ]
Liu, Xueliang [2 ]
Li, Li [2 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin Key Lab Clean Energy & Pollutant Control, Tianjin 400301, Peoples R China
[2] China Acad Bldg Res, Inst Bldg Environm & Energy, Beijing 100013, Peoples R China
关键词
HVAC; Optimal control; Reinforcement learning; Deep Q learning; Prioritized replay; Model -free control; MODEL-PREDICTIVE CONTROL; NEURAL-NETWORKS; HVAC SYSTEMS; OPTIMIZATION; VENTILATION; REGRESSION; SAVINGS; DESIGN;
D O I
10.1016/j.energy.2022.126209
中图分类号
O414.1 [热力学];
学科分类号
摘要
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems is critical to improving energy efficiency of demand-side. In this paper, a model-free optimal control method based on deep reinforcement learning is proposed to control the heat pump start/stop and room temperature setting in residential buildings. The opti-mization goal of this method is to obtain the highest comprehensive reward which considering thermal comfort and energy cost. Firstly, the randomness, learning process, thermal comfort and energy consumption of the model-free controller are systematically investigated by a simulation system based on measured data. The results show that randomness has a significant impact on the initial performance and convergence speed of the model -free controller; The model-free controller has a linear accumulation of comprehensive rewards during the learning process, and the slope of the accumulated comprehensive rewards can be used to determine whether the controller converges; The model-free controller coordinates monitoring data, weather forecasts and building thermal inertia to achieve the highest comprehensive reward. Afterwards, the model-free controller was verified in a nearly zero energy residential building in Beijing, China. The results show that model-free controller im-proves the comprehensive reward by 15.3% compared to rule-based method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Optimal strategy for transition into nearly zero energy residential buildings: A case study
    Shivanaganna, Nethravathi
    Shivamurthy, K. P.
    Boddapati, Venkatesh
    ENERGY, 2024, 307
  • [42] Data on residential nearly Zero Energy Buildings (nZEB) design in Eastern Eurpoe
    Attia, Shady
    DATA IN BRIEF, 2022, 43
  • [43] REINFORCEMENT LEARNING FOR ENERGY-EFFICIENT WIRELESS TRANSMISSION
    Mastronarde, Nicholas
    van der Schaar, Mihaela
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3452 - 3455
  • [44] Towards Nearly Zero Energy Buildings in Europe: A Focus on Retrofit in Non-Residential Buildings
    D'Agostino, Delia
    Zangheri, Paolo
    Castellazzi, Luca
    ENERGIES, 2017, 10 (01)
  • [45] Green signalling effects in the market for energy-efficient residential buildings
    Fuerst, Franz
    Oikarinen, Elias
    Harjunen, Oskari
    APPLIED ENERGY, 2016, 180 : 560 - 571
  • [46] Energy-efficient retrofitting of multi-storey residential buildings
    Sing, Michael C. P.
    Chan, Venus W. C.
    Lai, Joseph H. K.
    Matthews, Jane
    FACILITIES, 2021, 39 (11-12) : 722 - 736
  • [47] Deep Reinforcement Learning for Energy-Efficient Edge Caching in Mobile Edge Networks
    Deng, Meng
    Huan, Zhou
    Kai, Jiang
    Zheng, Hantong
    Yue, Cao
    Peng, Chen
    CHINA COMMUNICATIONS, 2024, : 1 - 14
  • [48] Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles
    Zhang, Lixiang
    Yan, Yan
    Hu, Yaoguang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 35 (8) : 3875 - 3888
  • [49] Energy-Efficient Deep Reinforcement Learning Accelerator Designs for Mobile Autonomous Systems
    Lee, Juhyoung
    Kim, Changhyeon
    Han, Donghyeon
    Kim, Sangyeob
    Kim, Sangjin
    Yoo, Hoi-Jun
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [50] Deep Reinforcement Learning for Energy-Efficient Data Dissemination Through UAV Networks
    Ali, Abubakar S.
    Al-Habob, Ahmed A.
    Naser, Shimaa
    Bariah, Lina
    Dobre, Octavia A.
    Muhaidat, Sami
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 5567 - 5583