Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning

被引:16
|
作者
Qin, Haosen [1 ]
Yu, Zhen [2 ]
Li, Tailu [1 ]
Liu, Xueliang [2 ]
Li, Li [2 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Tianjin Key Lab Clean Energy & Pollutant Control, Tianjin 400301, Peoples R China
[2] China Acad Bldg Res, Inst Bldg Environm & Energy, Beijing 100013, Peoples R China
关键词
HVAC; Optimal control; Reinforcement learning; Deep Q learning; Prioritized replay; Model -free control; MODEL-PREDICTIVE CONTROL; NEURAL-NETWORKS; HVAC SYSTEMS; OPTIMIZATION; VENTILATION; REGRESSION; SAVINGS; DESIGN;
D O I
10.1016/j.energy.2022.126209
中图分类号
O414.1 [热力学];
学科分类号
摘要
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems is critical to improving energy efficiency of demand-side. In this paper, a model-free optimal control method based on deep reinforcement learning is proposed to control the heat pump start/stop and room temperature setting in residential buildings. The opti-mization goal of this method is to obtain the highest comprehensive reward which considering thermal comfort and energy cost. Firstly, the randomness, learning process, thermal comfort and energy consumption of the model-free controller are systematically investigated by a simulation system based on measured data. The results show that randomness has a significant impact on the initial performance and convergence speed of the model -free controller; The model-free controller has a linear accumulation of comprehensive rewards during the learning process, and the slope of the accumulated comprehensive rewards can be used to determine whether the controller converges; The model-free controller coordinates monitoring data, weather forecasts and building thermal inertia to achieve the highest comprehensive reward. Afterwards, the model-free controller was verified in a nearly zero energy residential building in Beijing, China. The results show that model-free controller im-proves the comprehensive reward by 15.3% compared to rule-based method.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep reinforcement learning with reference system to handle constraints for energy-efficient train control
    Shang, Mengying
    Zhou, Yonghua
    Fujita, Hamido
    INFORMATION SCIENCES, 2021, 570 : 708 - 721
  • [22] Energy-efficient Residential Buildings with at least 60% less Energy Consumption
    Koch, Sarah
    BAUPHYSIK, 2017, 39 (01) : 22 - 22
  • [23] The Energy-Efficient Adaptation Scheme for Residential Buildings in Kazakhstan
    Kim, Yuliya
    Sun, Cheng
    2017 2ND INTERNATIONAL CONFERENCE ON ADVANCES ON CLEAN ENERGY RESEARCH (ICACER 2017), 2017, 118 : 28 - 34
  • [24] Reinforcement learning for energy-efficient control of parallel and identical machines
    Loffredo, Alberto
    May, Marvin Carl
    Schaefer, Louis
    Matta, Andrea
    Lanza, Gisela
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2023, 44 : 91 - 103
  • [25] Multiagent Reinforcement Learning for Energy Management in Residential Buildings
    Ahrarinouri, Mehdi
    Rastegar, Mohammad
    Seifi, Ali Reza
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (01) : 659 - 666
  • [26] Residential Energy Management with Deep Reinforcement Learning
    Wan, Zhiqiang
    Li, Hepeng
    He, Haibo
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [27] Energy-Efficient Ultra-Dense Network With Deep Reinforcement Learning
    Ju, Hyungyu
    Kim, Seungnyun
    Kim, Youngjoon
    Shim, Byonghyo
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 6539 - 6552
  • [28] Energy-Efficient Parking Analytics System using Deep Reinforcement Learning
    Rezaei, Yoones
    Lee, Stephen
    Mosse, Daniel
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 81 - 90
  • [29] Deep Reinforcement Learning for Energy-Efficient Networking with Reconfigurable Intelligent Surfaces
    Lee, Gilsoo
    Jung, Minchae
    Kasgari, Ali Taleb Zadeh
    Saad, Walid
    Bennis, Mehdi
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [30] Deep Reinforcement Learning for Energy-efficient Train Operation of Automatic Driving
    Meng, Xianglin
    Wang, He
    Lin, Mu
    Zhou, Yonghua
    2020 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2020, : 123 - 126