Existence and supercontractive estimates for parabolic-elliptic systems

被引:0
|
作者
Boccardo, Lucio [1 ]
Orsina, Luigi [2 ]
Porzio, Maria Michaela [3 ]
机构
[1] Sapienza Univ Roma, Ist Lombardo, Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Roma, Dipartimento Pianificaz, Design, Tecnol Architettura, Via Flaminia 70, I-00196 Rome, Italy
关键词
System of parabolic and elliptic equations; Supercontractive estimates; Existence of solutions; Noncoercive problems; UNIFORM;
D O I
10.1016/j.na.2022.113170
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study existence and summability of the solutions of the following parabolic-elliptic system of partial differential equations {ut - div(A(x, t)del u) = -div(uM(x)del psi) in Omega x (0, T), -div(M(x)del psi) = |u|theta in Omega x (0, T), psi(x, t) = 0 on partial derivative Omega x (0, T), u(x, t) = 0 on partial derivative Omega x (0, T), u(x, 0) = u(0)(x) in Omega where theta is an element of (0, 1), Omega is a bounded subset of R-N, N > 2, and T > 0. We will prove existence results for initial data u(0) in L-1(Omega). Moreover, despite the datum u(0) is assumed to be only a summable function and although the function uM(x)del psi in the divergence term of the first equation is not regular enough, there exist solutions that immediately improve their summability and belong to every Lebesgue space. Finally, we study the behavior in time of such solutions and we prove estimates that describe their blow-up for t near zero. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Renormalized solutions to a nonlinear parabolic-elliptic system
    Montesinos, MTG
    Gallego, FO
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1991 - 2003
  • [32] Global existence and blow-up for the solutions to nonlinear parabolic-elliptic system modelling chemotaxis
    Chen, H
    Zhong, XH
    IMA JOURNAL OF APPLIED MATHEMATICS, 2005, 70 (02) : 221 - 240
  • [33] Global existence for a 1D parabolic-elliptic model for chemical aggression in permeable materials
    Ali, Giuseppe
    Natalini, Roberto
    Torcicollo, Isabella
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 21 : 1 - 12
  • [34] Stabilization of a Parabolic-Elliptic System via Backstepping
    Alalabi, Ala'
    Morris, Kirsten
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2663 - 2668
  • [35] Null controllability for a parabolic-elliptic coupled system
    E. Fernández-Cara
    J. Limaco
    Silvano B. de Menezes
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 285 - 308
  • [36] Parameter Identification in a Parabolic-Elliptic Degenerate Problem
    Favini, Angelo
    Marinoschi, Gabriela
    DEGENERATE NONLINEAR DIFFUSION EQUATIONS, 2012, 2049 : 109 - 133
  • [37] Null controllability for a parabolic-elliptic coupled system
    Fernandez-Cara, E.
    Limaco, J.
    de Menezes, Silvano B.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 285 - 308
  • [38] Global well-posedness theory for a class of coupled parabolic-elliptic systems
    Malysheva, Tetyana
    White, Luther W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [39] Global existence and boundedness in a quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type
    Wang, Yilong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 22
  • [40] GLOBAL EXISTENCE IN THE 1D QUASILINEAR PARABOLIC-ELLIPTIC CHEMOTAXIS SYSTEM WITH CRITICAL NONLINEARITY
    Cieslak, Tomasz
    Fujie, Kentarou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02): : 165 - 176