Stabilization of a Parabolic-Elliptic System via Backstepping

被引:1
|
作者
Alalabi, Ala' [1 ]
Morris, Kirsten [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
BOUNDARY CONTROL; WELL-POSEDNESS;
D O I
10.1109/CDC49753.2023.10384112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stabilization of a parabolic partial differential equation coupled with an elliptic partial differential equation is considered. Even in the situation when these equations are exponentially stable when uncoupled, the coupled system may be unstable. A backstepping approach is used to design a boundary control that stabilizes the coupled system. The result is illustrated with simulations.
引用
收藏
页码:2663 / 2668
页数:6
相关论文
共 50 条
  • [1] Boundary control and observer design via backstepping for a coupled parabolic-elliptic system
    Alalabi, Ala'
    Morris, Kirsten
    AUTOMATICA, 2025, 174
  • [2] Wellposedness for a parabolic-elliptic system
    Coclite, GM
    Holden, H
    Karlsen, KH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 659 - 682
  • [3] The attractor of a parabolic-elliptic system
    Zong, Xiju
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3362 - 3370
  • [4] Bilinear Control for the Parabolic-Elliptic System
    Zong Xi-Ju
    Cheng Xin-Gong
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 968 - 971
  • [5] Optimal control of a nonlinear parabolic-elliptic system
    Zong, Xiju
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2366 - 2375
  • [6] Weak solutions to a parabolic-elliptic system of chemotaxis
    Senba, T
    Suzuki, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 191 (01) : 17 - 51
  • [7] Renormalized solutions to a nonlinear parabolic-elliptic system
    Montesinos, MTG
    Gallego, FO
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1991 - 2003
  • [8] Null controllability for a parabolic-elliptic coupled system
    E. Fernández-Cara
    J. Limaco
    Silvano B. de Menezes
    Bulletin of the Brazilian Mathematical Society, New Series, 2013, 44 : 285 - 308
  • [9] Null controllability for a parabolic-elliptic coupled system
    Fernandez-Cara, E.
    Limaco, J.
    de Menezes, Silvano B.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02): : 285 - 308
  • [10] Parabolic-elliptic Keller-Segel system
    Lemarie, Valentin
    TUNISIAN JOURNAL OF MATHEMATICS, 2024, 6 (03)