A t-intersecting Hilton-Milner theorem for vector spaces

被引:2
|
作者
Wang, Yunpeng [1 ]
Xu, Ao [2 ]
Yang, Jizhen [3 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Luoyang Normal Coll, Dept Math, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilton-Milner theorem; t-intersecting; Vector space; SYSTEMS;
D O I
10.1016/j.laa.2023.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an n-dimensional vector space over a q-element field. For an integer t >= 2, a family Fof k-dimensional subspaces in Vis t-intersecting if dim(F-1 boolean AND F-2) >= t for any F-1, F-2 is an element of F, and non-trivial if dim(boolean AND F-F is an element of F) <= t - 1. In this paper, we determine the maximum sizes of the non-trivial t-intersecting families for n >= 2k+ 2, k= t+2, and the extremal structures of families with the maximum sizes have also been characterized. Our results extend the well-known Hilton-Milner theorem for vector spaces to the case of t-intersection. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [41] Analogues of Milner's Theorem for families without long chains and of vector spaces
    Frankl, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
  • [42] Triangles in r-wise t-intersecting families
    Liao, Jiaqi
    Cao, Mengyu
    Lu, Mei
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 112
  • [43] Stabilities for Non-Uniform t-Intersecting Families
    Li, Yongtao
    Wu, Biao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [44] A Hilton-Milner-type theorem and an intersection conjecture for signed sets
    Borg, Peter
    DISCRETE MATHEMATICS, 2013, 313 (18) : 1805 - 1815
  • [45] Erdős–Ko–Rado and Hilton–Milner Type Theorems for Intersecting Chains in Posets
    Péter L. Erdős
    Ákos Seress
    László A. Székely
    Combinatorica, 2000, 20 : 27 - 45
  • [46] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [47] Strong stability of 3-wise t-intersecting families
    Tokushige, Norihide
    DISCRETE MATHEMATICS, 2024, 347 (05)
  • [48] On the c-strong chromatic number of t-intersecting hypergraphs
    Chung, Ping Ngai
    DISCRETE MATHEMATICS, 2013, 313 (10) : 1063 - 1069
  • [49] The maximum sum of the sizes of cross t-intersecting separated families
    Liu, Erica L. L.
    AIMS MATHEMATICS, 2023, 8 (12): : 30910 - 30921
  • [50] Extremal t-intersecting sub-families of hereditary families
    Borg, Peter
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 167 - 185