Let V be an n-dimensional vector space over a q-element field. For an integer t >= 2, a family Fof k-dimensional subspaces in Vis t-intersecting if dim(F-1 boolean AND F-2) >= t for any F-1, F-2 is an element of F, and non-trivial if dim(boolean AND F-F is an element of F) <= t - 1. In this paper, we determine the maximum sizes of the non-trivial t-intersecting families for n >= 2k+ 2, k= t+2, and the extremal structures of families with the maximum sizes have also been characterized. Our results extend the well-known Hilton-Milner theorem for vector spaces to the case of t-intersection. (c) 2023 Elsevier Inc. All rights reserved.
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Yao, Tian
Lv, Benjian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
Lv, Benjian
Wang, Kaishun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China