A t-intersecting Hilton-Milner theorem for vector spaces

被引:2
|
作者
Wang, Yunpeng [1 ]
Xu, Ao [2 ]
Yang, Jizhen [3 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Luoyang Normal Coll, Dept Math, Luoyang 471934, Peoples R China
基金
中国国家自然科学基金;
关键词
Hilton-Milner theorem; t-intersecting; Vector space; SYSTEMS;
D O I
10.1016/j.laa.2023.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be an n-dimensional vector space over a q-element field. For an integer t >= 2, a family Fof k-dimensional subspaces in Vis t-intersecting if dim(F-1 boolean AND F-2) >= t for any F-1, F-2 is an element of F, and non-trivial if dim(boolean AND F-F is an element of F) <= t - 1. In this paper, we determine the maximum sizes of the non-trivial t-intersecting families for n >= 2k+ 2, k= t+2, and the extremal structures of families with the maximum sizes have also been characterized. Our results extend the well-known Hilton-Milner theorem for vector spaces to the case of t-intersection. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条