CNAsim: improved simulation of single-cell copy number profiles and DNA-seq data from tumors

被引:2
|
作者
Weiner, Samson [1 ]
Bansal, Mukul S. [1 ,2 ,3 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Syst Genom, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Comp Sci & Engn, 371 Fairfield Way,Unit 4155, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
EVOLUTION;
D O I
10.1093/bioinformatics/btad434
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
CNAsim is a software package for improved simulation of single-cell copy number alteration (CNA) data from tumors. CNAsim can be used to efficiently generate single-cell copy number profiles for thousands of simulated tumor cells under a more realistic error model and a broader range of possible CNA mechanisms compared with existing simulators. The error model implemented in CNAsim accounts for the specific biases of single-cell sequencing that leads to read count fluctuation and poor resolution of CNA detection. For improved realism over existing simulators, CNAsim can (i) generate WGD, whole-chromosomal CNAs, and chromosome-arm CNAs, (ii) simulate subclonal population structure defined by the accumulation of chromosomal CNAs, and (iii) dilute the sampled cell population with both normal diploid cells and pseudo-diploid cells. The software can also generate DNA-seq data for sampled cells.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] CONET: copy number event tree model of evolutionary tumor history for single-cell data
    Markowska, Magda
    Cakala, Tomasz
    Miasojedow, Blazej
    Aybey, Bogac
    Juraeva, Dilafruz
    Mazur, Johanna
    Ross, Edith
    Staub, Eike
    Szczurek, Ewa
    GENOME BIOLOGY, 2022, 23 (01)
  • [42] A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations
    Milite, Salvatore
    Bergamin, Riccardo
    Patruno, Lucrezia
    Calonaci, Nicola
    Caravagna, Giulio
    BIOINFORMATICS, 2022, 38 (09) : 2512 - 2518
  • [43] Discovering single-cell eQTLs from scRNA-seq data only
    Ma, Tianxing
    Li, Haochen
    Zhang, Xuegong
    GENE, 2022, 829
  • [44] Tumor genetic analysis from single-cell RNA-seq data
    Nawy, Tal
    NATURE METHODS, 2018, 15 (07) : 571 - 571
  • [45] Tumor genetic analysis from single-cell RNA-seq data
    Tal Nawy
    Nature Methods, 2018, 15 : 571 - 571
  • [46] Repurposing CAR targets in solid tumors from pan-cancer single-cell RNA-seq data
    Madan, Sanna
    Schaffer, Alejandro
    Ruppin, Eytan
    CANCER RESEARCH, 2022, 82 (12)
  • [47] Estimation of immune cell content in bulk tumour tissue using reference profiles from single-cell RNA-seq data
    Schelker, Max
    Du, Jinyan
    Feau, Sonia
    Klipp, Edda
    Schoeberl, Birgit
    MacBeath, Gavin
    Raue, Andreas
    CANCER RESEARCH, 2017, 77
  • [48] Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution
    O'Hara, Ryan
    Tedone, Enzo
    Ludlow, Andrew
    Huang, Ejun
    Arosio, Beatrice
    Mari, Daniela
    Shay, Jerry W.
    GENOME RESEARCH, 2019, 29 (11) : 1878 - 1888
  • [49] Structural and functional insights from single-cell transcriptional profiles of pituitary tumors
    Brunner, Maxime
    Santoni, Federico
    Messerer, Mahmoud
    Daniel, Roy
    Messina, Andrea
    Meylan-Merlini, Jenny
    Muriset, Maude
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 585 - 586
  • [50] PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes
    Papadopoulos, Nikolaos
    Gonzalo, Parra R.
    Soeding, Johannes
    BIOINFORMATICS, 2019, 35 (18) : 3517 - 3519