CNAsim: improved simulation of single-cell copy number profiles and DNA-seq data from tumors

被引:2
|
作者
Weiner, Samson [1 ]
Bansal, Mukul S. [1 ,2 ,3 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Syst Genom, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Comp Sci & Engn, 371 Fairfield Way,Unit 4155, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
EVOLUTION;
D O I
10.1093/bioinformatics/btad434
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
CNAsim is a software package for improved simulation of single-cell copy number alteration (CNA) data from tumors. CNAsim can be used to efficiently generate single-cell copy number profiles for thousands of simulated tumor cells under a more realistic error model and a broader range of possible CNA mechanisms compared with existing simulators. The error model implemented in CNAsim accounts for the specific biases of single-cell sequencing that leads to read count fluctuation and poor resolution of CNA detection. For improved realism over existing simulators, CNAsim can (i) generate WGD, whole-chromosomal CNAs, and chromosome-arm CNAs, (ii) simulate subclonal population structure defined by the accumulation of chromosomal CNAs, and (iii) dilute the sampled cell population with both normal diploid cells and pseudo-diploid cells. The software can also generate DNA-seq data for sampled cells.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Improved detection of tumor suppressor events in single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Wang, Ning
    NPJ GENOMIC MEDICINE, 2020, 5 (01)
  • [32] A variational algorithm to detect the clonal copy number substructure of tumors from scRNA-seq data
    Antonio De Falco
    Francesca Caruso
    Xiao-Dong Su
    Antonio Iavarone
    Michele Ceccarelli
    Nature Communications, 14
  • [33] A variational algorithm to detect the clonal copy number substructure of tumors from scRNA-seq data
    De Falco, Antonio
    Caruso, Francesca
    Su, Xiao-Dong
    Iavarone, Antonio
    Ceccarelli, Michele
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [34] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Zhu, Tianyu
    Breeze, Charles E.
    Beck, Stephan
    GENOME BIOLOGY, 2020, 21 (01) : 1
  • [35] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Andrew E. Teschendorff
    Tianyu Zhu
    Charles E. Breeze
    Stephan Beck
    Genome Biology, 21
  • [36] NestedBD: Bayesian inference of phylogenetic trees from single-cell copy number profiles under a birth-death model
    Liu, Yushu
    Edrisi, Mohammadamin
    Yan, Zhi
    Ogilvie, Huw A.
    Nakhleh, Luay
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2024, 19 (01)
  • [37] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [38] Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq)
    Yu, Xiyuan
    Ruan, Weidong
    Lin, Fanghe
    Qian, Weizhou
    Zou, Yuan
    Liu, Yilong
    Su, Rui
    Niu, Qi
    Ruan, Qingyu
    Lin, Wei
    Zhu, Zhi
    Zhang, Huimin
    Yang, Chaoyong
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (20)
  • [39] CONET: copy number event tree model of evolutionary tumor history for single-cell data
    Magda Markowska
    Tomasz Cąkała
    BłaŻej Miasojedow
    Bogac Aybey
    Dilafruz Juraeva
    Johanna Mazur
    Edith Ross
    Eike Staub
    Ewa Szczurek
    Genome Biology, 23
  • [40] SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data
    Yang, Yuchen
    Huh, Ruth
    Culpepper, Houston W.
    Lin, Yuan
    Love, Michael I.
    Li, Yun
    BIOINFORMATICS, 2019, 35 (08) : 1269 - 1277