Multiscale attention dynamic aware network for fine-grained visual categorization

被引:0
|
作者
Ou, Jichu [1 ]
Li, Wanyi [2 ]
Huang, Jingmin [2 ]
Huang, Xiaojie [2 ]
Xie, Xuan [2 ]
机构
[1] Guangdong Univ Educ, Sch Math, Guangzhou, Peoples R China
[2] Guangdong Univ Educ, Sch Comp Sci, Guangzhou, Peoples R China
关键词
data mining; image classification; image recognition;
D O I
10.1049/ell2.12696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fine-grained visual categorization (FGVC) is a challenging task, facing the issues such as inter-class similarities, large intra-class variances, scale variation, and angle variation. To address these issues, the authors propose a novel multiscale attention dynamic aware network (MADA-Net). The core of network consists of three parallel sub-networks, which learn features from different scales. Each sub-network is composed of three serial sub-modules: (1) A self-attention module (SAM) locates objects according to relative importance scattered throughout feature map. (2) A multiscale feature extractor (MFE) learns the non-linear features of objects. (3) A dynamic aware module (DAM) enhances the learning capability of spatial deformation of the network to generate high-quality feature map. In addition, the authors propose a multiscale adjusted loss (MA-Loss) to improve the performance of network. Experiments on three prevailing benchmark datasets demonstrate that our method can achieve state-of-the-art performance.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] ProtoSimi: label correction for fine-grained visual categorization
    Jialiang Shen
    Yu Yao
    Shaoli Huang
    Zhiyong Wang
    Jing Zhang
    Ruxing Wang
    Jun Yu
    Tongliang Liu
    Machine Learning, 2024, 113 : 1903 - 1920
  • [32] Progressive Co-Attention Network for Fine-Grained Visual Classification
    Zhang, Tian
    Chang, Dongliang
    Ma, Zhanyu
    Guo, Jun
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [33] Dynamic Position-aware Network for Fine-grained Image Recognition
    Wang, Shijie
    Li, Haojie
    Wang, Zhihui
    Ouyang, Wanli
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2791 - 2799
  • [34] IMPROVING DYNAMIC GRAPH CONVOLUTIONAL NETWORK WITH FINE-GRAINED ATTENTION MECHANISM
    Wu, Bo
    Liang, Xun
    Zheng, Xiangping
    Guo, Yuhui
    Tang, Hui
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3938 - 3942
  • [35] Context-Aware Visual Policy Network for Fine-Grained Image Captioning
    Zha, Zheng-Jun
    Liu, Daqing
    Zhang, Hanwang
    Zhang, Yongdong
    Wu, Feng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (02) : 710 - 722
  • [36] Fine-Grained Categorization by Alignments
    Gavves, E.
    Fernando, B.
    Snoek, C. G. M.
    Smeulders, A. W. M.
    Tuytelaars, T.
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1713 - 1720
  • [37] Recombining Vision Transformer Architecture for Fine-Grained Visual Categorization
    Deng, Xuran
    Liu, Chuanbin
    Lu, Zhiying
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 127 - 138
  • [38] Fine-grained Visual Categorization with 2D-Warping
    Hanselmann, Harald
    Ney, Hermann
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 608 - 613
  • [39] Cross-X Learning for Fine-Grained Visual Categorization
    Luo, Wei
    Yang, Xitong
    Mo, Xianjie
    Lu, Yuheng
    Davis, Larry S.
    Li, Jun
    Yang, Jian
    Lim, Ser-Nam
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8241 - 8250
  • [40] A survey of fine-grained visual categorization based on deep learning
    XIE Yuxiang
    GONG Quanzhi
    LUAN Xidao
    YAN Jie
    ZHANG Jiahui
    Journal of Systems Engineering and Electronics, 2024, 35 (06) : 1337 - 1356