Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates

被引:11
|
作者
Chang, Kuang-Yu [1 ]
Riley, William J. [1 ]
Collier, Nathan [2 ]
McNicol, Gavin [3 ]
Fluet-Chouinard, Etienne [4 ]
Knox, Sara H. [5 ]
Delwiche, Kyle B. [6 ]
Jackson, Robert B. [7 ,8 ,9 ]
Poulter, Benjamin [10 ]
Saunois, Marielle [11 ]
Chandra, Naveen [12 ]
Gedney, Nicola [13 ]
Ishizawa, Misa [14 ]
Ito, Akihiko [15 ]
Joos, Fortunat [16 ,17 ]
Kleinen, Thomas [18 ]
Maggi, Federico [19 ]
McNorton, Joe [20 ]
Melton, Joe R. [21 ]
Miller, Paul [22 ,23 ]
Niwa, Yosuke [15 ,24 ]
Pasut, Chiara [19 ,25 ]
Patra, Prabir K. [26 ,27 ]
Peng, Changhui [28 ,29 ]
Peng, Sushi [30 ]
Segers, Arjo [31 ]
Tian, Hanqin [32 ]
Tsuruta, Aki [33 ]
Yao, Yuanzhi [34 ]
Yin, Yi [35 ]
Zhang, Wenxin [22 ]
Zhang, Zhen [36 ,37 ]
Zhu, Qing [1 ]
Zhu, Qiuan [38 ]
Zhuang, Qianlai [39 ]
机构
[1] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA
[2] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[3] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL USA
[4] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[5] Univ British Columbia, Dept Geog, Vancouver, BC, Canada
[6] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[7] Stanford Univ, Dept Earth Syst Sci, Stanford, CA USA
[8] Stanford Univ, Woods Inst Environm, Stanford, CA USA
[9] Stanford Univ, Precourt Inst Energy, Stanford, CA USA
[10] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA
[11] Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL CEA CNRS UVSQ, Gif Sur Yvette, France
[12] JAMSTEC, Inst Arctic Climate & Environm Res IACE, Yokohama, Japan
[13] Met Off Hadley Ctr, Joint Ctr Hydrometeorol Res, Wallingford, England
[14] Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada
[15] Natl Inst Environm Studies NIES, Earth Syst Div, Tsukuba, Japan
[16] Univ Bern, Climate & Environm Phys, Bern, Switzerland
[17] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[18] Max Planck Inst Meteorol, Hamburg, Germany
[19] Univ Sydney, Sch Civil Engn, Sydney, Australia
[20] European Ctr Medium Range Weather Forecasts, Res Dept, Reading, England
[21] Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada
[22] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[23] Lund Univ, Ctr Environm & Climate Sci, Lund, Sweden
[24] Meteorol Res Inst MRI, Tsukuba, Japan
[25] CSIRO Agr & Food, Urrbrae, SA, Australia
[26] JAMSTEC, Res Inst Global Change, Yokohama, Japan
[27] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[28] Hunan Normal Univ, Coll Resources & Environm Sci, Changsha, Peoples R China
[29] Univ Quebec Montreal, Dept Biol Sci, Montreal, PQ, Canada
[30] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing, Peoples R China
[31] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands
[32] Boston Coll, Schiller Inst Integrated Sci, Dept Earth & Environm Sci, Soc, Chestnut Hill, MA USA
[33] Finnish Meteorol Inst, Helsinki, Finland
[34] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[35] CALTECH, Div Geophys & Planetary Sci, Pasadena, CA USA
[36] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[37] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China
[38] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Peoples R China
[39] Purdue Univ, Dept Earth Atmospher & Planetary Sci, Dept Agron, W Lafayette, IN USA
基金
瑞士国家科学基金会;
关键词
benchmarking; bottom-up models; eddy covariance; methane emissions; observational constraints; top-down models; wetland modeling; ATMOSPHERIC METHANE; TERRESTRIAL ECOSYSTEMS; PRESENT STATE; DATASET; EXTENT; CTEM; CH4; DYNAMICS; PATTERNS; TRENDS;
D O I
10.1111/gcb.16755
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH(4) year(-1)) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.
引用
收藏
页码:4298 / 4312
页数:15
相关论文
共 45 条
  • [41] Uncertainty Quantification of Global Net Methane Emissions From Terrestrial Ecosystems Using a Mechanistically Based Biogeochemistry Model
    Liu, Licheng
    Zhuang, Qianlai
    Oh, Youmi
    Shurpali, Narasinha J.
    Kim, Seungbum
    Poulter, Ben
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (06)
  • [42] Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming
    Powis, Carter M.
    Byrne, David
    Zobel, Zachary
    Gassert, Kelly N.
    Lute, A. C.
    Schwalm, Christopher R.
    SCIENCE ADVANCES, 2023, 9 (36)
  • [43] Estimates of methane and nitrous oxide emission from a rice field in Central Java']Java, Indonesia, based on the DeNitrification DeComposition model
    Munawaroh, Umi
    Komariah
    Ariyanto, Dwi Priyo
    Zaki, Muhamad Khoiru
    Noda, Keigo
    SAINS TANAH, 2022, 19 (01): : 1 - 11
  • [44] Genetic parameter estimates for methane emission from breath during lactation and potential inaccuracies in reliabilities assuming a repeatability versus random regression model
    van Breukelen, A. E.
    Veerkamp, R. F.
    de Haas, Y.
    Aldridge, M. N.
    JOURNAL OF DAIRY SCIENCE, 2024, 107 (08) : 5853 - 5868
  • [45] Leveraging multi-variable observations to reduce and quantify the output uncertainty of a global hydrological model: evaluation of three ensemble-based approaches for the Mississippi River basin
    Doell, Petra
    Hasan, Howlader Mohammad Mehedi
    Schulze, Kerstin
    Gerdener, Helena
    Boerger, Lara
    Shadkam, Somayeh
    Ackermann, Sebastian
    Hosseini-Moghari, Seyed-Mohammad
    Schmied, Hannes Mueller
    Guentner, Andreas
    Kusche, Juergen
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (10) : 2259 - 2295