Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates

被引:11
|
作者
Chang, Kuang-Yu [1 ]
Riley, William J. [1 ]
Collier, Nathan [2 ]
McNicol, Gavin [3 ]
Fluet-Chouinard, Etienne [4 ]
Knox, Sara H. [5 ]
Delwiche, Kyle B. [6 ]
Jackson, Robert B. [7 ,8 ,9 ]
Poulter, Benjamin [10 ]
Saunois, Marielle [11 ]
Chandra, Naveen [12 ]
Gedney, Nicola [13 ]
Ishizawa, Misa [14 ]
Ito, Akihiko [15 ]
Joos, Fortunat [16 ,17 ]
Kleinen, Thomas [18 ]
Maggi, Federico [19 ]
McNorton, Joe [20 ]
Melton, Joe R. [21 ]
Miller, Paul [22 ,23 ]
Niwa, Yosuke [15 ,24 ]
Pasut, Chiara [19 ,25 ]
Patra, Prabir K. [26 ,27 ]
Peng, Changhui [28 ,29 ]
Peng, Sushi [30 ]
Segers, Arjo [31 ]
Tian, Hanqin [32 ]
Tsuruta, Aki [33 ]
Yao, Yuanzhi [34 ]
Yin, Yi [35 ]
Zhang, Wenxin [22 ]
Zhang, Zhen [36 ,37 ]
Zhu, Qing [1 ]
Zhu, Qiuan [38 ]
Zhuang, Qianlai [39 ]
机构
[1] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA
[2] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[3] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL USA
[4] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[5] Univ British Columbia, Dept Geog, Vancouver, BC, Canada
[6] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[7] Stanford Univ, Dept Earth Syst Sci, Stanford, CA USA
[8] Stanford Univ, Woods Inst Environm, Stanford, CA USA
[9] Stanford Univ, Precourt Inst Energy, Stanford, CA USA
[10] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA
[11] Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL CEA CNRS UVSQ, Gif Sur Yvette, France
[12] JAMSTEC, Inst Arctic Climate & Environm Res IACE, Yokohama, Japan
[13] Met Off Hadley Ctr, Joint Ctr Hydrometeorol Res, Wallingford, England
[14] Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada
[15] Natl Inst Environm Studies NIES, Earth Syst Div, Tsukuba, Japan
[16] Univ Bern, Climate & Environm Phys, Bern, Switzerland
[17] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[18] Max Planck Inst Meteorol, Hamburg, Germany
[19] Univ Sydney, Sch Civil Engn, Sydney, Australia
[20] European Ctr Medium Range Weather Forecasts, Res Dept, Reading, England
[21] Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada
[22] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[23] Lund Univ, Ctr Environm & Climate Sci, Lund, Sweden
[24] Meteorol Res Inst MRI, Tsukuba, Japan
[25] CSIRO Agr & Food, Urrbrae, SA, Australia
[26] JAMSTEC, Res Inst Global Change, Yokohama, Japan
[27] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[28] Hunan Normal Univ, Coll Resources & Environm Sci, Changsha, Peoples R China
[29] Univ Quebec Montreal, Dept Biol Sci, Montreal, PQ, Canada
[30] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing, Peoples R China
[31] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands
[32] Boston Coll, Schiller Inst Integrated Sci, Dept Earth & Environm Sci, Soc, Chestnut Hill, MA USA
[33] Finnish Meteorol Inst, Helsinki, Finland
[34] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[35] CALTECH, Div Geophys & Planetary Sci, Pasadena, CA USA
[36] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[37] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China
[38] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Peoples R China
[39] Purdue Univ, Dept Earth Atmospher & Planetary Sci, Dept Agron, W Lafayette, IN USA
基金
瑞士国家科学基金会;
关键词
benchmarking; bottom-up models; eddy covariance; methane emissions; observational constraints; top-down models; wetland modeling; ATMOSPHERIC METHANE; TERRESTRIAL ECOSYSTEMS; PRESENT STATE; DATASET; EXTENT; CTEM; CH4; DYNAMICS; PATTERNS; TRENDS;
D O I
10.1111/gcb.16755
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH(4) year(-1)) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.
引用
收藏
页码:4298 / 4312
页数:15
相关论文
共 45 条
  • [31] Estimates of the global water budget and its annual cycle using observational and model data
    Trenberth, Kevin E.
    Smith, Lesley
    Qian, Taotao
    Dai, Aiguo
    Fasullo, John
    JOURNAL OF HYDROMETEOROLOGY, 2007, 8 (04) : 758 - 769
  • [32] Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC
    Susiluoto, Jouni
    Raivonen, Maarit
    Backman, Leif
    Laine, Marko
    Makela, Jarmo
    Peltola, Olli
    Vesala, Timo
    Aalto, Tuula
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (03) : 1199 - 1228
  • [33] Feasibility study in using scatterometer data for wetland rice mapping yielding methane emission indicators for global applications.
    van Leeuwen, H
    Verhoeven, R
    van der Gon, HD
    van der Woerd, H
    Janssen, L
    Tjalling, J
    WORKSHOP ON EMERGING SCATTEROMETER APPLICATIONS - FROM RESEARCH TO OPERATIONS, 1998, 424 : 45 - 48
  • [34] Quantification and uncertainty of global upland soil methane sinks: Processes, controls, model limitations, and improvements
    Song, Hanxiong
    Peng, Changhui
    Zhu, Qiuan
    Chen, Zhi
    Blanchet, Jean-Pierre
    Liu, Qiuyu
    Li, Tong
    Li, Peng
    Liu, Zelin
    EARTH-SCIENCE REVIEWS, 2024, 252
  • [35] Implications of uncertainty and scale in carbon emission estimates on locally appropriate designs to reduce emissions from deforestation and degradation (REDD+)
    Lusiana, Betha
    van Noordwijk, Meine
    Johana, Feri
    Galudra, Gamma
    Suyanto, S.
    Cadisch, Georg
    MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2014, 19 (06) : 757 - 772
  • [36] Implications of uncertainty and scale in carbon emission estimates on locally appropriate designs to reduce emissions from deforestation and degradation (REDD+)
    Betha Lusiana
    Meine van Noordwijk
    Feri Johana
    Gamma Galudra
    S. Suyanto
    Georg Cadisch
    Mitigation and Adaptation Strategies for Global Change, 2014, 19 : 757 - 772
  • [37] Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty
    Ito, A.
    Inatomi, M.
    BIOGEOSCIENCES, 2012, 9 (02) : 759 - 773
  • [38] Global methane emission estimates for 2000-2012 from CarbonTracker Europe-CH4 v1.0
    Tsuruta, Aki
    Aalto, Tuula
    Backman, Leif
    Hakkarainen, Janne
    van der Laan-Luijkx, Ingrid T.
    Krol, Maarten C.
    Spahni, Renato
    Houweling, Sander
    Laine, Marko
    Dlugokencky, Ed
    Gomez-Pelaez, Angel J.
    van der Schoot, Marcel
    Langenfelds, Ray
    Ellul, Raymond
    Arduini, Jgor
    Apadula, Francesco
    Gerbig, Christoph
    Feist, Dietrich G.
    Kivi, Rigel
    Yoshida, Yukio
    Peters, Wouter
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (03) : 1261 - 1289
  • [39] Integrating NDVI-Based Within-Wetland Vegetation Classification in a Land Surface Model Improves Methane Emission Estimations
    Yazbeck, Theresia
    Bohrer, Gil
    Shchehlov, Oleksandr
    Ward, Eric
    Bordelon, Robert
    Villa, Jorge A.
    Ju, Yang
    REMOTE SENSING, 2024, 16 (06)
  • [40] Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds (vol 13, pg 2857, 2013)
    Williams, J. E.
    van Velthoven, P. F. J.
    Brenninkmeijer, C. A. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (07) : 3693 - 3694