Observational constraints reduce model spread but not uncertainty in global wetland methane emission estimates

被引:11
|
作者
Chang, Kuang-Yu [1 ]
Riley, William J. [1 ]
Collier, Nathan [2 ]
McNicol, Gavin [3 ]
Fluet-Chouinard, Etienne [4 ]
Knox, Sara H. [5 ]
Delwiche, Kyle B. [6 ]
Jackson, Robert B. [7 ,8 ,9 ]
Poulter, Benjamin [10 ]
Saunois, Marielle [11 ]
Chandra, Naveen [12 ]
Gedney, Nicola [13 ]
Ishizawa, Misa [14 ]
Ito, Akihiko [15 ]
Joos, Fortunat [16 ,17 ]
Kleinen, Thomas [18 ]
Maggi, Federico [19 ]
McNorton, Joe [20 ]
Melton, Joe R. [21 ]
Miller, Paul [22 ,23 ]
Niwa, Yosuke [15 ,24 ]
Pasut, Chiara [19 ,25 ]
Patra, Prabir K. [26 ,27 ]
Peng, Changhui [28 ,29 ]
Peng, Sushi [30 ]
Segers, Arjo [31 ]
Tian, Hanqin [32 ]
Tsuruta, Aki [33 ]
Yao, Yuanzhi [34 ]
Yin, Yi [35 ]
Zhang, Wenxin [22 ]
Zhang, Zhen [36 ,37 ]
Zhu, Qing [1 ]
Zhu, Qiuan [38 ]
Zhuang, Qianlai [39 ]
机构
[1] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA
[2] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA
[3] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL USA
[4] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[5] Univ British Columbia, Dept Geog, Vancouver, BC, Canada
[6] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA
[7] Stanford Univ, Dept Earth Syst Sci, Stanford, CA USA
[8] Stanford Univ, Woods Inst Environm, Stanford, CA USA
[9] Stanford Univ, Precourt Inst Energy, Stanford, CA USA
[10] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD USA
[11] Univ Paris Saclay, Lab Sci Climat & Environm, LSCE IPSL CEA CNRS UVSQ, Gif Sur Yvette, France
[12] JAMSTEC, Inst Arctic Climate & Environm Res IACE, Yokohama, Japan
[13] Met Off Hadley Ctr, Joint Ctr Hydrometeorol Res, Wallingford, England
[14] Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada
[15] Natl Inst Environm Studies NIES, Earth Syst Div, Tsukuba, Japan
[16] Univ Bern, Climate & Environm Phys, Bern, Switzerland
[17] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[18] Max Planck Inst Meteorol, Hamburg, Germany
[19] Univ Sydney, Sch Civil Engn, Sydney, Australia
[20] European Ctr Medium Range Weather Forecasts, Res Dept, Reading, England
[21] Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada
[22] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[23] Lund Univ, Ctr Environm & Climate Sci, Lund, Sweden
[24] Meteorol Res Inst MRI, Tsukuba, Japan
[25] CSIRO Agr & Food, Urrbrae, SA, Australia
[26] JAMSTEC, Res Inst Global Change, Yokohama, Japan
[27] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[28] Hunan Normal Univ, Coll Resources & Environm Sci, Changsha, Peoples R China
[29] Univ Quebec Montreal, Dept Biol Sci, Montreal, PQ, Canada
[30] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing, Peoples R China
[31] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands
[32] Boston Coll, Schiller Inst Integrated Sci, Dept Earth & Environm Sci, Soc, Chestnut Hill, MA USA
[33] Finnish Meteorol Inst, Helsinki, Finland
[34] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[35] CALTECH, Div Geophys & Planetary Sci, Pasadena, CA USA
[36] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[37] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China
[38] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Peoples R China
[39] Purdue Univ, Dept Earth Atmospher & Planetary Sci, Dept Agron, W Lafayette, IN USA
基金
瑞士国家科学基金会;
关键词
benchmarking; bottom-up models; eddy covariance; methane emissions; observational constraints; top-down models; wetland modeling; ATMOSPHERIC METHANE; TERRESTRIAL ECOSYSTEMS; PRESENT STATE; DATASET; EXTENT; CTEM; CH4; DYNAMICS; PATTERNS; TRENDS;
D O I
10.1111/gcb.16755
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH(4) year(-1)) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.
引用
收藏
页码:4298 / 4312
页数:15
相关论文
共 45 条
  • [1] Model estimates of global and regional atmospheric methane emissions of wetland ecosystems
    S. N. Denisov
    A. V. Eliseev
    I. I. Mokhov
    M. M. Arzhanov
    Izvestiya, Atmospheric and Oceanic Physics, 2015, 51 : 482 - 487
  • [2] Model estimates of global and regional atmospheric methane emissions of wetland ecosystems
    Denisov, S. N.
    Eliseev, A. V.
    Mokhov, I. I.
    Arzhanov, M. M.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (05) : 482 - 487
  • [3] Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity
    Timothy A. Myers
    Ryan C. Scott
    Mark D. Zelinka
    Stephen A. Klein
    Joel R. Norris
    Peter M. Caldwell
    Nature Climate Change, 2021, 11 : 501 - 507
  • [4] Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity
    Myers, Timothy A.
    Scott, Ryan C.
    Zelinka, Mark D.
    Klein, Stephen A.
    Norris, Joel R.
    Caldwell, Peter M.
    NATURE CLIMATE CHANGE, 2021, 11 (06) : 501 - +
  • [5] Observational constraints on parameter estimates for a simple climate model
    Bodman, Roger W.
    Karoly, David J.
    Wijffels, Susan
    Enting, Ian G.
    AUSTRALIAN METEOROLOGICAL AND OCEANOGRAPHIC JOURNAL, 2012, 62 (04): : 277 - 285
  • [6] Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations
    Parker, Robert J.
    Wilson, Chris
    Bloom, A. Anthony
    Comyn-Platt, Edward
    Hayman, Garry
    McNorton, Joe
    Boesch, Hartmut
    Chipperfield, Martyn P.
    BIOGEOSCIENCES, 2020, 17 (22) : 5669 - 5691
  • [7] Uncertainty in model estimates of global groundwater depth
    Reinecke, Robert
    Gnann, Sebastian
    Stein, Lina
    Bierkens, Marc
    de Graaf, Inge
    Gleeson, Tom
    Essink, Gualbert Oude
    Sutanudjaja, Edwin H
    Ruz Vargas, Claudia
    Verkaik, Jarno
    Wagener, Thorsten
    Environmental Research Letters, 2024, 19 (11)
  • [8] Uncertainty and global sensitivity analysis of road transport emission estimates
    Kioutsioukis, I
    Tarantola, S
    Saltelli, A
    Gatelli, D
    ATMOSPHERIC ENVIRONMENT, 2004, 38 (38) : 6609 - 6620
  • [9] Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories
    Wang, Fenjuan
    Maksyutov, Shamil
    Tsuruta, Aki
    Janardanan, Rajesh
    Ito, Akihiko
    Sasakawa, Motoki
    Machida, Toshinobu
    Morino, Isamu
    Yoshida, Yukio
    Kaiser, Johannes W.
    Janssens-Maenhout, Greet
    Dlugokencky, Edward J.
    Mammarella, Ivan
    Lavric, Jost Valentin
    Matsunaga, Tsuneo
    REMOTE SENSING, 2019, 11 (21)
  • [10] Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites
    van Huissteden, J.
    Petrescu, A. M. R.
    Hendriks, D. M. D.
    Rebel, K. T.
    BIOGEOSCIENCES, 2009, 6 (12) : 3035 - 3051