A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal

被引:0
|
作者
Baez-Yanez, Mario Gilberto [1 ]
Siero, Jeroen C. W. [1 ,2 ]
Petridou, Natalia [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiol, Ctr Image Sci, Utrecht, Netherlands
[2] Royal Netherlands Acad Arts & Sci, Spinoza Ctr Neuroimaging Amsterdam, Amsterdam, Netherlands
基金
美国国家卫生研究院;
关键词
biophysical modeling; BOLD signal; diffusion; hemodynamic response; microvasculature; Monte Carlo simulation; susceptibility; Voronoi tessellation; HUMAN VISUAL-CORTEX; VASCULAR NETWORK; INTRAVASCULAR CONTRIBUTION; MICROVASCULAR NETWORKS; BRAIN ACTIVATION; BOLD RESPONSE; BASE-LINE; SPIN-ECHO; FMRI; MODEL;
D O I
10.1002/nbm.5026
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is one of the most used imaging techniques to map brain activity or to obtain clinical information about human cortical vasculature, in both healthy and disease conditions. Nevertheless, BOLD fMRI is an indirect measurement of brain functioning triggered by neurovascular coupling. The origin of the BOLD signal is quite complex, and the signal formation thus depends, among other factors, on the topology of the cortical vasculature and the associated hemodynamic changes. To understand the hemodynamic evolution of the BOLD signal response in humans, it is beneficial to have a computational framework available that virtually resembles the human cortical vasculature, and simulates hemodynamic changes and corresponding MRI signal changes via interactions of intrinsic biophysical and magnetic properties of the tissues. To this end, we have developed a mechanistic computational framework that simulates the hemodynamic fingerprint of the BOLD signal based on a statistically defined, three-dimensional, vascular model that approaches the human cortical vascular architecture. The microvasculature is approximated through a Voronoi tessellation method and the macrovasculature is adapted from two-photon microscopy mice data. Using this computational framework, we simulated hemodynamic change-scerebral blood flow, cerebral blood volume, and blood oxygen saturation-induced by virtual arterial dilation. Then we computed local magnetic field disturbances generated by the vascular topology and the corresponding blood oxygen saturation changes. This mechanistic computational framework also considers the intrinsic biophysical and magnetic properties of nearby tissue, such as water diffusion and relaxation properties, resulting in a dynamic BOLD signal response. The proposed mechanistic computational framework provides an integrated biophysical model that can offer better insights regarding the spatial and temporal properties of the BOLD signal changes.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Photoacoustic Imaging of Vascular Hemodynamics: Validation with Blood Oxygenation Level-Dependent MR Imaging
    Rich, Laurie J.
    Seshadri, Mukund
    RADIOLOGY, 2015, 275 (01) : 110 - 118
  • [42] Renal Blood Oxygenation Level-Dependent Magnetic Resonance Imaging A Sensitive and Objective Analysis
    Thacker, Jon M.
    Li, Lu-Ping
    Li, Wei
    Zhou, Ying
    Sprague, Stuart M.
    Prasad, Pottumarthi V.
    INVESTIGATIVE RADIOLOGY, 2015, 50 (12) : 821 - 827
  • [43] Anticipatory and Stimulus-Evoked Blood Oxygenation Level-Dependent Modulations Related to Spatial Attention Reflect a Common Additive Signal
    Sylvester, Chad M.
    Shulman, Gordon L.
    Jack, Anthony I.
    Corbetta, Maurizio
    JOURNAL OF NEUROSCIENCE, 2009, 29 (34): : 10671 - 10682
  • [44] Blood oxygenation level-dependent functional MRI signal turbulence caused by ultrahigh spatial resolution: numerical simulation and theoretical explanation
    Chen, Zikuan
    Chen, Zeyuan
    Calhoun, Vince
    NMR IN BIOMEDICINE, 2013, 26 (03) : 248 - 264
  • [45] Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response
    Cohen, ER
    Ugurbil, K
    Kim, SG
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (09): : 1042 - 1053
  • [46] Visual processing in the ketamine-anesthetized monkeyOptokinetic and blood oxygenation level-dependent responses
    David A. Leopold
    Holger K. Plettenberg
    Nikos K. Logothetis
    Experimental Brain Research, 2002, 143 : 359 - 372
  • [47] Effects of Intranasal Oxytocin on the Blood Oxygenation Level-Dependent Signal in Food Motivation and Cognitive Control Pathways in Overweight and Obese Men
    Plessow, Franziska
    Marengi, Dean A.
    Perry, Sylvia K.
    Felicione, Julia M.
    Franklin, Rachel
    Holmes, Tara M.
    Holsen, Laura M.
    Makris, Nikolaos
    Deckersbach, Thilo
    Lawson, Elizabeth A.
    NEUROPSYCHOPHARMACOLOGY, 2018, 43 (03) : 638 - 645
  • [48] Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal
    Tian, Peifang
    Teng, Ivan C.
    May, Larry D.
    Kurz, Ronald
    Lu, Kun
    Scadeng, Miriam
    Hillman, Elizabeth M. C.
    De Crespigny, Alex J.
    D'Arceuil, Helen E.
    Mandeville, Joseph B.
    Marota, John J. A.
    Rosen, Bruce R.
    Liu, Thomas T.
    Boas, David A.
    Buxton, Richard B.
    Dale, Anders M.
    Devor, Anna
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (34) : 15246 - 15251
  • [49] Blood oxygenation level-dependent cardiovascular magnetic resonance of the skeletal muscle in healthy adults: Different paradigms for provoking signal alterations
    Suo, Shiteng
    Tang, Hui
    Lu, Qing
    Zhang, Lan
    Ni, Qihong
    Cao, Mengqiu
    Chen, Zengai
    Zhao, Huilin
    Sun, Beibei
    Xu, Jianrong
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (03) : 1590 - 1601
  • [50] Effects of Intranasal Oxytocin on the Blood Oxygenation Level-Dependent Signal in Food Motivation and Cognitive Control Pathways in Overweight and Obese Men
    Franziska Plessow
    Dean A Marengi
    Sylvia K Perry
    Julia M Felicione
    Rachel Franklin
    Tara M Holmes
    Laura M Holsen
    Nikolaos Makris
    Thilo Deckersbach
    Elizabeth A Lawson
    Neuropsychopharmacology, 2018, 43 : 638 - 645