Comparing the methods of alternating and simultaneous projections for two subspaces

被引:0
|
作者
Reich, Simeon [1 ]
Zalas, Rafal [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
Friedrichs angle; Principal angles; Rates of convergence; ARBITRARILY SLOW CONVERGENCE; LINEAR CONVERGENCE; ANGLES;
D O I
10.1016/j.laa.2023.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-known methods of alternating and simul-taneous projections when applied to two nonorthogonal linear subspaces of a real Euclidean space. Assuming that both of the methods have a common starting point chosen from either one of the subspaces, we show that the method of alternating projections converges significantly faster than the method of simultaneous projections. On the other hand, we provide ex-amples of subspaces and starting points, where the method of simultaneous projections outperforms the method of alternat-ing projections.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 263
页数:29
相关论文
共 50 条
  • [31] A systematic analysis for the quantitative comparison of phase retrieval methods based on alternating projections
    Veiras, Francisco E.
    Bianchetti, Arturo
    Etchepareborda, Pablo
    Vadnjal, Ana L.
    Federico, Alejandro
    OPTICS AND LASERS IN ENGINEERING, 2018, 106 : 24 - 31
  • [32] Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces
    Francisco J. Aragón Artacho
    Rubén Campoy
    Numerical Algorithms, 2019, 82 : 397 - 421
  • [33] Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces
    Aragon Artacho, Francisco J.
    Campoy, Ruben
    NUMERICAL ALGORITHMS, 2019, 82 (02) : 397 - 421
  • [34] Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods
    Schoepfer, F.
    Schuster, T.
    Louis, A. K.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (05): : 479 - 506
  • [35] Angles between infinite dimensional subspaces with applications to the Rayleigh-Ritz and alternating projectors methods
    Knyazev, Andrew
    Jujunashvili, Abram
    Argentati, Merico
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1323 - 1345
  • [36] Convergences of Alternating Projections in Spaces
    Choi, Byoung Jin
    Ji, Un Cig
    Lim, Yongdo
    CONSTRUCTIVE APPROXIMATION, 2018, 47 (03) : 391 - 405
  • [37] Wavelet synthesis by alternating projections
    Pesquet, JC
    Combettes, PL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (03) : 728 - 732
  • [38] Two-Level Least Squares Methods in Krylov Subspaces
    Il’in V.P.
    Journal of Mathematical Sciences, 2018, 232 (6) : 892 - 902
  • [39] ALTERNATING PROJECTIONS AND ORTHOGONAL DECOMPOSITIONS
    Kopecka, Eva
    Reich, Simeon
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (01) : 155 - 159
  • [40] Periodic projections of alternating knots
    Costa, Antonio F.
    Van Quach-Hongler, Cam
    TOPOLOGY AND ITS APPLICATIONS, 2021, 300