Comparing the methods of alternating and simultaneous projections for two subspaces

被引:0
|
作者
Reich, Simeon [1 ]
Zalas, Rafal [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
Friedrichs angle; Principal angles; Rates of convergence; ARBITRARILY SLOW CONVERGENCE; LINEAR CONVERGENCE; ANGLES;
D O I
10.1016/j.laa.2023.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-known methods of alternating and simul-taneous projections when applied to two nonorthogonal linear subspaces of a real Euclidean space. Assuming that both of the methods have a common starting point chosen from either one of the subspaces, we show that the method of alternating projections converges significantly faster than the method of simultaneous projections. On the other hand, we provide ex-amples of subspaces and starting points, where the method of simultaneous projections outperforms the method of alternat-ing projections.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:235 / 263
页数:29
相关论文
共 50 条
  • [21] NONEXPANSIVE PROJECTIONS ONTO TWO-DIMENSIONAL SUBSPACES OF BANACH-SPACES
    CALVERT, B
    FITZPATRICK, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (01) : 149 - 160
  • [22] Alternating projections on manifolds
    Lewis, Adrian S.
    Malick, Jerome
    MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (01) : 216 - 234
  • [23] STOCHASTIC ALTERNATING PROJECTIONS
    Diaconis, Persi
    Khare, Kshitij
    Saloff-Coste, Laurent
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (03) : 963 - 979
  • [24] RECOVERY OF FUNCTIONS FROM THEIR PROJECTIONS IN SUBSPACES
    BRAILOVS.VL
    ENGINEERING CYBERNETICS, 1969, (02): : 96 - &
  • [25] Subspaces, angles and pairs of orthogonal projections
    Galantai, A.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (03): : 227 - 260
  • [26] Biometric verification by projections in error subspaces
    Leszczynski, Mariusz
    Skarbek, Wladyslaw
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2007, 4481 : 166 - +
  • [27] Alternating projections, remotest projections, and greedy approximation
    Borodin, Petr A.
    Kopecka, Eva
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [28] Root systems, affine subspaces, and projections
    Cellini, Paola
    Marietti, Mario
    JOURNAL OF ALGEBRA, 2021, 587 : 310 - 335
  • [29] RESTRICTED FAMILIES OF PROJECTIONS AND RANDOM SUBSPACES
    Chen, Changhao
    REAL ANALYSIS EXCHANGE, 2018, 43 (02) : 347 - 358
  • [30] On the vanishing of subspaces of alternating bilinear forms
    Gow, Rod
    Quinlan, Rachel
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (06): : 415 - 428