Discovery of type 2 diabetes mellitus with correlation and optimization driven hybrid deep learning approach

被引:0
|
作者
Middha, Karuna [1 ,2 ]
Mittal, Apeksha [1 ]
机构
[1] GD Goenka Univ, Sch Engn & Sci, Dept CSE, Sohna, Haryana, India
[2] GD Goenka Univ, Sch Engn & Sci, Dept CSE, Sohna Gurgaon Rd, Sohna 122103, Haryana, India
关键词
Type; 2; diabetes; correlation; Yeo-Jhonson transformation; deep residual network; tanimoto similarity; PREDICTION;
D O I
10.1080/10255842.2023.2267721
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diabetes mellitus is a severe condition that has the potential to impair strength. The disease known as diabetes mellitus, which is a chronic condition, is brought on by a significant rise in blood glucose levels. The diagnosis of this condition is made using a variety of chemical and physical testing. Diabetes, however, can harm the organs if it goes undetected. This study develops a hybrid deep-learning technique to recognize Type 2 diabetes mellitus. The data is cleaned up at the pre-processing stage using a data transformation technique based on the Yeo-Jhonson transformation. The tanimoto similarity is used in the feature selection process to select the best features from the data. To prepare data for future processing, data augmentation is performed. The Deep Residual Network and the Rider-based Neural Network are recommended and trained separately for the T2DM identification using the Competitive Multi-Verse Rider Optimizer. The outputs generated by the RideNN and DRN classifiers are blended using correlation-based fusion. The suggested CMVRO-based NN-DRN has shown improved performance with the highest accuracy of 91.4%, sensitivity of 94.8%, and specificity of 90.1%.
引用
收藏
页码:1931 / 1943
页数:13
相关论文
共 50 条
  • [31] Optimization of type 2 diabetes mellitus control in Egyptian patients
    Ebid, Abdel-Hameed I. M.
    Mobarez, Mohammed Ahmed
    Ramadan, Ramadan Ahmed
    Mahmoud, Mohamed Adel
    CLINICAL DIABETOLOGY, 2020, 9 (06): : 433 - 441
  • [32] A Machine-Learning Approach on Metabolomic Data to Predict Type 2 Diabetes Mellitus Incidence
    Leiherer, Andreas
    Muendlein, Axel
    Saely, Christoph H.
    Plattner, Thomas
    Larcher, Barbara
    Mader, Arthur
    Vonbank, Alexander
    Laaksonen, Reijo
    Fraunberger, Peter
    Drexel, Heinz
    DIABETES, 2024, 73
  • [33] Classification of Microbiome Data from Type 2 Diabetes Mellitus Individuals with Deep Learning Image Recognition
    Pfeil, Juliane
    Siptroth, Julienne
    Pospisil, Heike
    Frohme, Marcus
    Hufert, Frank T.
    Moskalenko, Olga
    Yateem, Murad
    Nechyporenko, Alina
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [34] Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models
    Allesoe, Rosa Lundbye
    Lundgaard, Agnete Troen
    Medina, Ricardo Hernandez
    Aguayo-Orozco, Alejandro
    Johansen, Joachim
    Nissen, Jakob Nybo
    Brorsson, Caroline
    Mazzoni, Gianluca
    Niu, Lili
    Biel, Jorge Hernansanz
    Brasas, Valentas
    Webel, Henry
    Benros, Michael Eriksen
    Pedersen, Anders Gorm
    Chmura, Piotr Jaroslaw
    Jacobsen, Ulrik Plesner
    Mari, Andrea
    Koivula, Robert
    Mahajan, Anubha
    Vinuela, Ana
    Tajes, Juan Fernandez
    Sharma, Sapna
    Haid, Mark
    Hong, Mun-Gwan
    Musholt, Petra B.
    De Masi, Federico
    Vogt, Josef
    Pedersen, Helle Krogh
    Gudmundsdottir, Valborg
    Jones, Angus
    Kennedy, Gwen
    Bell, Jimmy
    Thomas, E. Louise
    Frost, Gary
    Thomsen, Henrik
    Hansen, Elizaveta
    Hansen, Tue Haldor
    Vestergaard, Henrik
    Muilwijk, Mirthe
    Blom, Marieke T.
    Hart, Leen M. T.
    Pattou, Francois
    Raverdy, Violeta
    Brage, Soren
    Kokkola, Tarja
    Heggie, Alison
    McEvoy, Donna
    Mourby, Miranda
    Kaye, Jane
    Hattersley, Andrew
    NATURE BIOTECHNOLOGY, 2023, 41 (03) : 399 - +
  • [35] Optimization-driven Hierarchical Deep Reinforcement Learning for Hybrid Relaying Communications
    Zou, Yuze
    Xie, Yutong
    Zhang, Canhui
    Gong, Shimin
    Dinh Thai Hoang
    Niyato, Dusit
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [36] THE CORRELATION BETWEEN DEPRESSION AND DIABETIC NEPHROPATHY IN TYPE 2 DIABETES MELLITUS
    Themeli, Y.
    Aliko, I.
    Hashorva, A.
    Bajrami, V.
    Idrizi, A.
    Barbullushi, M.
    Ktona, E.
    EUROPEAN PSYCHIATRY, 2012, 27
  • [37] Risk factors and correlation of colorectal polyps with type 2 diabetes mellitus
    Xu, Jin
    He, Wei
    Zhang, Nannan
    Sang, Nan
    Zhao, Junning
    ANNALS OF PALLIATIVE MEDICINE, 2022, 11 (02) : 647 - 654
  • [38] Apolipoprotein B and its correlation with dyslipidemia in Type 2 Diabetes Mellitus
    Makaju, H. S.
    Sharma, V. K.
    Yadav, B. K.
    Tuladhar, E. T.
    Bhandari, R.
    Bhattarai, A.
    Raut, M.
    Dubey, R. K.
    Niraula, A.
    Sapkota, A.
    Neupane, A.
    Ramtel, R.
    CLINICA CHIMICA ACTA, 2024, 558
  • [39] Correlation between Acylcarnitine and Peripheral Neuropathy in Type 2 Diabetes Mellitus
    An, Zhenni
    Zheng, Danmeng
    Wei, Dongzhuo
    Jiang, Dingwen
    Xing, Xuejiao
    Liu, Chang
    JOURNAL OF DIABETES RESEARCH, 2022, 2022
  • [40] CORRELATION OF GLYCOSYLATED HEMOGLOBIN AND BMI IN TYPE 2 DIABETES MELLITUS PATIENTS
    Rai, Narasimha K.
    JOURNAL OF EVOLUTION OF MEDICAL AND DENTAL SCIENCES-JEMDS, 2015, 4 (92): : 15739 - 15740