Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models

被引:47
|
作者
Allesoe, Rosa Lundbye [1 ,2 ,3 ]
Lundgaard, Agnete Troen [1 ,2 ]
Medina, Ricardo Hernandez [1 ]
Aguayo-Orozco, Alejandro [1 ,2 ]
Johansen, Joachim [1 ,2 ]
Nissen, Jakob Nybo [1 ]
Brorsson, Caroline [1 ,2 ]
Mazzoni, Gianluca [1 ,2 ]
Niu, Lili [1 ]
Biel, Jorge Hernansanz [1 ,2 ]
Brasas, Valentas [1 ]
Webel, Henry [1 ]
Benros, Michael Eriksen [3 ,4 ]
Pedersen, Anders Gorm [2 ]
Chmura, Piotr Jaroslaw [1 ,2 ]
Jacobsen, Ulrik Plesner [1 ,2 ]
Mari, Andrea [5 ]
Koivula, Robert [6 ]
Mahajan, Anubha [6 ]
Vinuela, Ana [7 ,8 ]
Tajes, Juan Fernandez [6 ]
Sharma, Sapna [9 ,10 ,11 ]
Haid, Mark [12 ]
Hong, Mun-Gwan [13 ]
Musholt, Petra B. [14 ]
De Masi, Federico [1 ,2 ]
Vogt, Josef [15 ]
Pedersen, Helle Krogh [2 ,15 ]
Gudmundsdottir, Valborg [1 ,2 ]
Jones, Angus [16 ]
Kennedy, Gwen [17 ]
Bell, Jimmy [18 ]
Thomas, E. Louise [18 ]
Frost, Gary [19 ]
Thomsen, Henrik [20 ]
Hansen, Elizaveta [20 ]
Hansen, Tue Haldor [15 ]
Vestergaard, Henrik [15 ]
Muilwijk, Mirthe [21 ]
Blom, Marieke T. [22 ]
Hart, Leen M. T. [21 ,23 ,24 ]
Pattou, Francois [25 ]
Raverdy, Violeta [25 ]
Brage, Soren [26 ]
Kokkola, Tarja [27 ]
Heggie, Alison [28 ]
McEvoy, Donna [29 ]
Mourby, Miranda [30 ]
Kaye, Jane [30 ]
Hattersley, Andrew [16 ]
机构
[1] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth & Med Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark
[3] Copenhagen Univ Hosp, Copenhagen Res Ctr Mental Hlth, Mental Hlth Ctr Copenhagen, Copenhagen, Denmark
[4] Univ Copenhagen, Fac Hlth & Med Sci, Dept Immunol & Microbiol, Copenhagen, Denmark
[5] CNR, Inst Neurosci, Padua, Italy
[6] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
[7] Univ Geneva, Dept Genet Med & Dev, Med Sch, Geneva, Switzerland
[8] Newcastle Univ, Fac Med Sci, Biosci Inst, Newcastle Upon Tyne, Tyne & Wear, England
[9] Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Bavaria, Germany
[10] Helmholtz Zentrum Munchen, Inst Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Bavaria, Germany
[11] Tech Univ Munich, Chair Food Chem & Mol & Sensory Sci, Freising Weihenstephan, Germany
[12] Helmholtz Zentrum Muenchen, German Res Ctr Environm Hlth, Metabol & Prote Core, Neuherberg, Germany
[13] KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, Affin Prote, Solna, Sweden
[14] Sanofi Aventis Deutschland, Res & Dev Global Dev Translat Med & Clin Pharmaco, Frankfurt, Germany
[15] Univ Copenhagen, Novo Nordisk Fdn Ctr Basic Metab Res, Fac Hlth & Med Sci, Copenhagen, Denmark
[16] Univ Exeter Med Sch, Exeter, Devon, England
[17] Univ Dundee, Sch Med, Immunoassay Biomarker Core Lab, Dundee, Scotland
[18] Univ Westminster, Res Ctr Optimal Hlth, Dept Life Sci, London, England
[19] Imperial Coll London, Fac Med, Sect Nutr Res, London, England
[20] Copenhagen Univ Hosp Herlev Gentofte, Dept Radiol, Herlev, Denmark
[21] Vrije Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Dept Epidemiol & Data Sci, Amsterdam UMC, Amsterdam, Netherlands
[22] Vrije Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Dept Gen Practice, Amsterdam UMC, Amsterdam, Netherlands
[23] Leiden Univ Med Ctr, Dept Biomed Data Sci, Sect Mol Epidemiol, Leiden, Netherlands
[24] Leiden Univ Med Ctr, Dept Cell & Chem Biol, Leiden, Netherlands
[25] Univ Lille, Lille Pasteur Inst, EGID, CHU Lille,Inserm, Lille, France
[26] Univ Cambridge, MRC Epidemiol Unit, Sch Clin Med, Cambridge, England
[27] Univ Eastern Finland, Dept Med, Kuopio, Finland
[28] Newcastle Univ, Inst Cellular Med, Newcastle Upon Tyne, Tyne & Wear, England
[29] Royal Victoria Infirm, Diabet Res Network, Newcastle Upon Tyne, Tyne & Wear, England
[30] Univ Oxford, Fac Law, Ctr Hlth Law & Emerging Technol HeLEX, Oxford, England
[31] Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Malmo, Sweden
[32] Newcastle Univ, Fac Med Sci, Translat & Clin Res Inst, Newcastle Upon Tyne, Tyne & Wear, England
[33] Univ Dundee, Sch Med, Div Populat Hlth & Genom, Dundee, Scotland
[34] Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Genet & Mol Epidemiol Unit,CRC,SUS, Malmo, Sweden
[35] Eli Lilly Reg Operat, Vienna, Austria
[36] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[37] Univ Oxford, Radcliffe Dept Med, OCDEM, Oxford, England
[38] German Res Ctr Environm Hlth, Inst Expt Genet, Helmholtz Zentrum Munchen, Neuherberg, Germany
[39] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[40] Univ Ljubljana, Fac Med, Inst Biochem, Ljubljana, Slovenia
[41] Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England
[42] Genentech Inc, San Francisco, CA 94080 USA
关键词
METFORMIN TREATMENT; MULTI-OMICS; METAANALYSIS; CHOLESTEROL;
D O I
10.1038/s41587-022-01520-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
引用
收藏
页码:399 / +
页数:17
相关论文
共 50 条
  • [1] Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
    Rosa Lundbye Allesøe
    Agnete Troen Lundgaard
    Ricardo Hernández Medina
    Alejandro Aguayo-Orozco
    Joachim Johansen
    Jakob Nybo Nissen
    Caroline Brorsson
    Gianluca Mazzoni
    Lili Niu
    Jorge Hernansanz Biel
    Cristina Leal Rodríguez
    Valentas Brasas
    Henry Webel
    Michael Eriksen Benros
    Anders Gorm Pedersen
    Piotr Jaroslaw Chmura
    Ulrik Plesner Jacobsen
    Andrea Mari
    Robert Koivula
    Anubha Mahajan
    Ana Vinuela
    Juan Fernandez Tajes
    Sapna Sharma
    Mark Haid
    Mun-Gwan Hong
    Petra B. Musholt
    Federico De Masi
    Josef Vogt
    Helle Krogh Pedersen
    Valborg Gudmundsdottir
    Angus Jones
    Gwen Kennedy
    Jimmy Bell
    E. Louise Thomas
    Gary Frost
    Henrik Thomsen
    Elizaveta Hansen
    Tue Haldor Hansen
    Henrik Vestergaard
    Mirthe Muilwijk
    Marieke T. Blom
    Leen M. ‘t Hart
    Francois Pattou
    Violeta Raverdy
    Soren Brage
    Tarja Kokkola
    Alison Heggie
    Donna McEvoy
    Miranda Mourby
    Jane Kaye
    Nature Biotechnology, 2023, 41 : 399 - 408
  • [2] Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models (vol 41, pg 399, 2023)
    Allesoe, Rosa Lundbye
    Lundgaard, Agnete Troen
    Hernandez Medina, Ricardo
    Aguayo-Orozco, Alejandro
    Johansen, Joachim
    Nissen, Jakob Nybo
    Brorsson, Caroline
    Mazzoni, Gianluca
    Niu, Lili
    Biel, Jorge Hernansanz
    Leal Rodriguez, Cristina
    Brasas, Valentas
    Webel, Henry
    Benros, Michael Eriksen
    Pedersen, Anders Gorm
    Chmura, Piotr Jaroslaw
    Jacobsen, Ulrik Plesner
    Mari, Andrea
    Koivula, Robert
    Mahajan, Anubha
    Vinuela, Ana
    Tajes, Juan Fernandez
    Sharma, Sapna
    Haid, Mark
    Hong, Mun-Gwan B.
    Musholt, Petra
    De Masi, Federico
    Vogt, Josef
    Pedersen, Helle Krogh
    Gudmundsdottir, Valborg
    Jones, Angus
    Kennedy, Gwen
    Bell, Jimmy
    Thomas, E. Louise
    Frost, Gary
    Thomsen, Henrik
    Hansen, Elizaveta
    Hansen, Tue Haldor
    Vestergaard, Henrik
    Muilwijk, Mirthe T.
    Blom, Marieke M.
    't Hart, Leen
    Pattou, Francois
    Raverdy, Violeta
    Brage, Soren
    Kokkola, Tarja
    Heggie, Alison
    McEvoy, Donna
    Mourby, Miranda
    Kaye, Jane
    NATURE BIOTECHNOLOGY, 2023, 41 (07) : 1026 - 1026
  • [3] Author Correction: Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
    Rosa Lundbye Allesøe
    Agnete Troen Lundgaard
    Ricardo Hernández Medina
    Alejandro Aguayo-Orozco
    Joachim Johansen
    Jakob Nybo Nissen
    Caroline Brorsson
    Gianluca Mazzoni
    Lili Niu
    Jorge Hernansanz Biel
    Cristina Leal Rodríguez
    Valentas Brasas
    Henry Webel
    Michael Eriksen Benros
    Anders Gorm Pedersen
    Piotr Jaroslaw Chmura
    Ulrik Plesner Jacobsen
    Andrea Mari
    Robert Koivula
    Anubha Mahajan
    Ana Vinuela
    Juan Fernandez Tajes
    Sapna Sharma
    Mark Haid
    Mun-Gwan Hong
    Petra B. Musholt
    Federico De Masi
    Josef Vogt
    Helle Krogh Pedersen
    Valborg Gudmundsdottir
    Angus Jones
    Gwen Kennedy
    Jimmy Bell
    E. Louise Thomas
    Gary Frost
    Henrik Thomsen
    Elizaveta Hansen
    Tue Haldor Hansen
    Henrik Vestergaard
    Mirthe Muilwijk
    Marieke T. Blom
    Leen M. ‘t Hart
    Francois Pattou
    Violeta Raverdy
    Soren Brage
    Tarja Kokkola
    Alison Heggie
    Donna McEvoy
    Miranda Mourby
    Jane Kaye
    Nature Biotechnology, 2023, 41 : 1026 - 1026
  • [4] Generative chemistry: drug discovery with deep learning generative models
    Bian, Yuemin
    Xie, Xiang-Qun
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (03)
  • [5] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [6] A Deep-Learning View of Chemical Space Designed to Facilitate Drug Discovery
    Maragakis, Paul
    Nisonoff, Hunter
    Cole, Brian
    Shaw, David E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (10) : 4487 - 4496
  • [7] Deep-learning generative models enable design of synthetic orthologs of a signaling protein
    Lian, Xinran
    Praljak, Niksa
    Ferguson, Andrew L.
    Ranganathan, Rama
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 311A - 311A
  • [8] Molecular design in drug discovery: a comprehensive review of deep generative models
    Cheng, Yu
    Gong, Yongshun
    Liu, Yuansheng
    Song, Bosheng
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [9] Generative deep learning for the development of a type 1 diabetes simulator
    Mujahid, Omer
    Contreras, Ivan
    Beneyto, Aleix
    Vehi, Josep
    COMMUNICATIONS MEDICINE, 2024, 4 (01):
  • [10] Generative deep learning for the development of a type 1 diabetes simulator
    Omer Mujahid
    Ivan Contreras
    Aleix Beneyto
    Josep Vehi
    Communications Medicine, 4