CA-UNet: Convolution and attention fusion for lung nodule segmentation

被引:1
|
作者
Wang, Tong [1 ]
Wu, Fubin [1 ]
Lu, Haoran [1 ]
Xu, Shengzhou [1 ,2 ,3 ]
机构
[1] South Cent Minzu Univ, Coll Comp Sci & Technol, Wuhan, Peoples R China
[2] Hubei Prov Engn Res Ctr Intelligent Management Mfg, Wuhan, Peoples R China
[3] South Cent Minzu Univ, Coll Comp Sci & Technol, Wuhan 430074, Peoples R China
关键词
channel attention module; lung nodule; segmentation; Swin Transformer block; U-Net;
D O I
10.1002/ima.22878
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lung cancer is one of the deadliest cancers in the world and is a serious threat to human life. Lung nodules are an early manifestation of lung cancer, early detection and treatment of which can improve the survival rate of patients. In order to accurately segment the lung nodule regions in lung CT images, CA-UNet, an encoding and decoding structure based on convolution and attention fusion, is proposed based on the U-Net network. It has improved on two points: First, at the skip connection, the global feature information is extracted using the Swin Transformer block and then fused with the pre-extraction features and subsequently fed into the corresponding layer of the decoder; second, each channel information is reweighted in the decoder by the channel attention module so that the network focuses on more important channels. Experimental results on the LIDC-IDRI public database of lung nodules showed that the intersection of union, dice similarity coefficient, precision, and recall of the algorithm were 82.42%, 89.86%, 89.07%, and 92.44%, respectively. The algorithm has better segmentation performance compared to other segmentation methods.
引用
下载
收藏
页码:1469 / 1479
页数:11
相关论文
共 50 条
  • [21] PAC-UNet: Parallel Dual Self-Attention with Convolution for Meniscal MRI Image Segmentation
    Zhang, Weijian
    Feng, Meiling
    Xia, Chengyi
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2024, 33 (04)
  • [22] Improved UNet with Attention for Medical Image Segmentation
    AL Qurri, Ahmed
    Almekkawy, Mohamed
    SENSORS, 2023, 23 (20)
  • [23] MM-UNet: Multi-attention mechanism and multi-scale feature fusion UNet for tumor image segmentation
    Xing, Yaozheng
    Yuan, Jie
    Liu, Qixun
    Peng, Shihao
    Yan, Yan
    Yao, Junyi
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 253 - 257
  • [24] SAtUNet: Series atrous convolution enhanced U-Net for lung nodule segmentation
    Selvadass, Salomi
    Bruntha, P. Malin
    Sagayam, K. Martin
    Gunerhan, Hatira
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [25] Lung nodule type classification in CT images using UNet based segmentation and ANFIS based classification
    Manickavasagam, R.
    Selvan, S.
    Selvan, Mary
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2023, 25 (04): : 31 - 39
  • [26] RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning
    Wu, Zezhi
    Li, Xiaoshu
    Zuo, Jianhui
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [27] Research on thyroid nodule segmentation using an improved UNet network
    Xu, Peng
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2024, 40 (02):
  • [28] Dual attention fusion UNet for COVID-19 lesion segmentation from CT images
    Ma, Yinjin
    Zhang, Yajuan
    Chen, Lin
    Jiang, Qiang
    Wei, Biao
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (04) : 713 - 729
  • [29] An IOMT assisted lung nodule segmentation using enhanced receptive field-based modified UNet
    Ali Z.
    Irtaza A.
    Maqsood M.
    Personal and Ubiquitous Computing, 2024, 28 (01) : 93 - 107
  • [30] CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement
    Fan X.
    Zhou J.
    Jiang X.
    Xin M.
    Hou L.
    Computers in Biology and Medicine, 2024, 172