Improved UNet with Attention for Medical Image Segmentation

被引:11
|
作者
AL Qurri, Ahmed [1 ]
Almekkawy, Mohamed [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
关键词
UNet; UNet plus plus; Transformer; CNN; attention; medical imaging; ultrasound; CT scan; U-NET; PLUS PLUS; ARCHITECTURE; TRANSFORMER;
D O I
10.3390/s23208589
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Medical image segmentation is crucial for medical image processing and the development of computer-aided diagnostics. In recent years, deep Convolutional Neural Networks (CNNs) have been widely adopted for medical image segmentation and have achieved significant success. UNet, which is based on CNNs, is the mainstream method used for medical image segmentation. However, its performance suffers owing to its inability to capture long-range dependencies. Transformers were initially designed for Natural Language Processing (NLP), and sequence-to-sequence applications have demonstrated the ability to capture long-range dependencies. However, their abilities to acquire local information are limited. Hybrid architectures of CNNs and Transformer, such as TransUNet, have been proposed to benefit from Transformer's long-range dependencies and CNNs' low-level details. Nevertheless, automatic medical image segmentation remains a challenging task due to factors such as blurred boundaries, the low-contrast tissue environment, and in the context of ultrasound, issues like speckle noise and attenuation. In this paper, we propose a new model that combines the strengths of both CNNs and Transformer, with network architectural improvements designed to enrich the feature representation captured by the skip connections and the decoder. To this end, we devised a new attention module called Three-Level Attention (TLA). This module is composed of an Attention Gate (AG), channel attention, and spatial normalization mechanism. The AG preserves structural information, whereas channel attention helps to model the interdependencies between channels. Spatial normalization employs the spatial coefficient of the Transformer to improve spatial attention akin to TransNorm. To further improve the skip connection and reduce the semantic gap, skip connections between the encoder and decoder were redesigned in a manner similar to that of the UNet++ dense connection. Moreover, deep supervision using a side-output channel was introduced, analogous to BASNet, which was originally used for saliency predictions. Two datasets from different modalities, a CT scan dataset and an ultrasound dataset, were used to evaluate the proposed UNet architecture. The experimental results showed that our model consistently improved the prediction performance of the UNet across different datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [2] DEA-UNet: a dense-edge-attention UNet architecture for medical image segmentation
    Zeng, Zhenhuan
    Fan, Chaodong
    Xiao, Leyi
    Qu, Xilong
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [3] A Medical Image Segmentation Method Based on Improved UNet 3+ Network
    Xu, Yang
    Hou, Shike
    Wang, Xiangyu
    Li, Duo
    Lu, Lu
    DIAGNOSTICS, 2023, 13 (03)
  • [4] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Zhang, Lei
    Lan, Chaofeng
    Fu, Lirong
    Mao, Xiuhuan
    Zhang, Meng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2277 - 2285
  • [5] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Lei Zhang
    Chaofeng Lan
    Lirong Fu
    Xiuhuan Mao
    Meng Zhang
    Signal, Image and Video Processing, 2023, 17 : 2277 - 2285
  • [6] DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
    Shen, Longfeng
    Wang, Qiong
    Zhang, Yingjie
    Qin, Fenglan
    Jin, Hengjun
    Zhao, Wei
    MEDICINE, 2023, 102 (39) : E35328
  • [7] MLCA-UNet: medical image segmentation networks with multiscale linear and convolutional attention
    Jinzhi Zhou
    Haoyang He
    Guangcen Ma
    Saifeng Li
    Guopeng Zhang
    Signal, Image and Video Processing, 2025, 19 (6)
  • [8] DI-Unet: Dimensional interaction self-attention for medical image segmentation
    Wu, Yanlin
    Wang, Guanglei
    Wang, Zhongyang
    Wang, Hongrui
    Li, Yan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [9] A Novel Elastomeric UNet for Medical Image Segmentation
    Cai, Sijing
    Wu, Yi
    Chen, Guannan
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [10] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299