Improved UNet with Attention for Medical Image Segmentation

被引:11
|
作者
AL Qurri, Ahmed [1 ]
Almekkawy, Mohamed [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
关键词
UNet; UNet plus plus; Transformer; CNN; attention; medical imaging; ultrasound; CT scan; U-NET; PLUS PLUS; ARCHITECTURE; TRANSFORMER;
D O I
10.3390/s23208589
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Medical image segmentation is crucial for medical image processing and the development of computer-aided diagnostics. In recent years, deep Convolutional Neural Networks (CNNs) have been widely adopted for medical image segmentation and have achieved significant success. UNet, which is based on CNNs, is the mainstream method used for medical image segmentation. However, its performance suffers owing to its inability to capture long-range dependencies. Transformers were initially designed for Natural Language Processing (NLP), and sequence-to-sequence applications have demonstrated the ability to capture long-range dependencies. However, their abilities to acquire local information are limited. Hybrid architectures of CNNs and Transformer, such as TransUNet, have been proposed to benefit from Transformer's long-range dependencies and CNNs' low-level details. Nevertheless, automatic medical image segmentation remains a challenging task due to factors such as blurred boundaries, the low-contrast tissue environment, and in the context of ultrasound, issues like speckle noise and attenuation. In this paper, we propose a new model that combines the strengths of both CNNs and Transformer, with network architectural improvements designed to enrich the feature representation captured by the skip connections and the decoder. To this end, we devised a new attention module called Three-Level Attention (TLA). This module is composed of an Attention Gate (AG), channel attention, and spatial normalization mechanism. The AG preserves structural information, whereas channel attention helps to model the interdependencies between channels. Spatial normalization employs the spatial coefficient of the Transformer to improve spatial attention akin to TransNorm. To further improve the skip connection and reduce the semantic gap, skip connections between the encoder and decoder were redesigned in a manner similar to that of the UNet++ dense connection. Moreover, deep supervision using a side-output channel was introduced, analogous to BASNet, which was originally used for saliency predictions. Two datasets from different modalities, a CT scan dataset and an ultrasound dataset, were used to evaluate the proposed UNet architecture. The experimental results showed that our model consistently improved the prediction performance of the UNet across different datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] TransCUNet: UNet cross fused transformer for medical image segmentation
    Jiang, Shen
    Li, Jinjiang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [22] SMESwin Unet: Merging CNN and Transformer for Medical Image Segmentation
    Wang, Ziheng
    Min, Xiongkuo
    Shi, Fangyu
    Jin, Ruinian
    Nawrin, Saida S.
    Yu, Ichen
    Nagatomi, Ryoichi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 517 - 526
  • [23] Light-UNet: An Efficient Segmentation Network for Medical Image
    Zhang, Yue
    Xu, Chao
    Zhang, Zhifan
    Wang, Jianjun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14867 : 302 - 313
  • [24] Semantic Segmentation in Medical Image Based on Hybrid Dlinknet and Unet
    Samudrala, Suresh
    Mohan, C. Krishna
    3rd IEEE 2022 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2022, 2022, : 42 - 47
  • [25] Vision Mamba and xLSTM-UNet for medical image segmentation
    Xin Zhong
    Gehao Lu
    Hao Li
    Scientific Reports, 15 (1)
  • [26] JOINT ATTENTION FOR MEDICAL IMAGE SEGMENTATION
    Zhang, Mo
    Dong, Bin
    Li, Quanzheng
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [27] NFMPAtt-Unet: Neighborhood Fuzzy C-means Multi-scale Pyramid Hybrid Attention Unet for medical image segmentation
    Zhao, Xinpeng
    Xu, Weihua
    NEURAL NETWORKS, 2024, 178
  • [28] Research on cuttings image segmentation method based on improved MultiRes-Unet plus plus with attention mechanism
    Huo, Fengcai
    Liu, Kaiming
    Dong, Hongli
    Ren, Weijian
    Dong, Shuai
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 799 - 808
  • [29] MDA-Unet: A Multi-Scale Dilated Attention U-Net for Medical Image Segmentation
    Amer, Alyaa
    Lambrou, Tryphon
    Ye, Xujiong
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [30] CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement
    Fan X.
    Zhou J.
    Jiang X.
    Xin M.
    Hou L.
    Computers in Biology and Medicine, 2024, 172