OSCILLATION AND NONOSCILLATION FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACES

被引:0
|
作者
Guerraiche, Nassim [1 ]
Hamani, Samira [2 ]
Henderson, Johnny [3 ]
机构
[1] Univ Constantine 2, Dept Informat Fondamentale & ses Applicat, BP 67A, Constantine, Algeria
[2] Univ Mostaganem, Lab Math Appl & Pures, BP 227, Mostaganem 27000, Algeria
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
来源
FIXED POINT THEORY | 2023年 / 24卷 / 02期
关键词
Existence; oscillatory; nonoscillatory; fractional differential inclusions; Caputo-Hadamard type derivative; fixed point; measure of noncompactness;
D O I
10.24193/fpt-ro.2023.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For r & ISIN; (1, 2], we establish sufficient conditions for the existence of oscillatory and nonoscillatory solutions to a boundary value problem for an rth order Caputo-Hadamard fractional differential inclusion in a Banach space. Our approach is based upon the set-valued analog of Mo & BULL;nch's fixed point theorem combined with the technique of measure of noncompactness.
引用
收藏
页码:611 / 626
页数:16
相关论文
共 50 条
  • [31] CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH INTEGRAL BOUNDARY CONDITIONS VIA FIXED POINT THEORY
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Gouri, Nesrine
    Khelil, Kamel Ali
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 86 : 97 - 112
  • [32] NONLINEAR IMPLICIT CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATION WITH FRACTIONAL BOUNDARY CONDITIONS
    Derdar, Nedjemeddine
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (4B): : 999 - 1014
  • [33] Caputo-Hadamard fractional Halanay inequality
    He, Bin-Bin
    Zhou, Hua-Cheng
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [34] RANDOM COUPLED SYSTEMS OF IMPLICIT CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS IN GENERALIZED BANACH SPACES
    Abbas, S.
    Arifi, N. A.
    Benchohra, M.
    Graef, J. R.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (02): : 329 - 350
  • [35] Some results on the study of Caputo-Hadamard fractional stochastic differential equations
    Makhlouf, Abdellatif Ben
    Mchiri, Lassaad
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [36] Oscillation and Nonoscillation Results for the Caputo Fractional q-Difference Equations and Inclusions
    Abbas S.
    Benchohra M.
    Graef J.R.
    Journal of Mathematical Sciences, 2021, 258 (5) : 577 - 593
  • [37] A new scheme for the solution of the nonlinear Caputo-Hadamard fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 105 : 56 - 69
  • [38] EXISTENCE AND STABILITY FOR NONLINEAR CAPUTO-HADAMARD FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Haoues, M.
    Ardjouni, A.
    Djoudi, A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2020, 89 (02): : 225 - 242
  • [39] On the solutions of Caputo-Hadamard Pettis-type fractional differential equations
    Cichon, Mieczyslaw
    Salem, Hussein A. H.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3031 - 3053
  • [40] On Averaging Principle for Caputo-Hadamard Fractional Stochastic Differential Pantograph Equation
    Mouy, Mounia
    Boulares, Hamid
    Alshammari, Saleh
    Alshammari, Mohammad
    Laskri, Yamina
    Mohammed, Wael W.
    FRACTAL AND FRACTIONAL, 2023, 7 (01)