Power series approach to nonlinear oscillators

被引:2
|
作者
As'ad, Ata Abu [1 ]
Asad, Jihad [2 ,3 ]
机构
[1] Palestine Tech Univ Kadoorie, Dept Appl Math, Tulkarm, Palestine
[2] Palestine Tech Univ Kadoorie, Dept Phys, Tulkarm, Palestine
[3] Palestine Tech Univ Kadoorie, POB 7, Tulkarm 305, Palestine
关键词
nonlinear differential equation; equilibrium (fixed point); limit cycle; stability; semistable power series; simulation; ENERGY-BALANCE; HAMILTONIAN APPROACH; VARIATIONAL APPROACH; VIBRATIONS; SYSTEM; MOTION;
D O I
10.1177/14613484231188756
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this article, we introduce a nonlinear oscillator equation containing two strong linear terms. An approximate solution was obtained using power series approach. Furthermore, by introducing a parameter to the original equation, we fined the fixed points of the modified nonlinear oscillator equation and study stability analysis of these fixed points. On the other hand, we simulate the solution of the nonlinear oscillator equation and introduced many plots for different initial conditions. Finally, we make some plots concerning the phase portrait for different cases.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [41] Nonlinear Analysis of Voltage-Controlled Oscillators: A Systematic Approach
    Buonomo, Antonio
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (06) : 1659 - 1670
  • [42] A Lagrange surrogate-based approach for uncertain nonlinear oscillators
    Wei, Sha
    Lan, Jin-Chun
    Ding, Hu
    Chen, Li-Qun
    Peng, Zhi-Ke
    JOURNAL OF SOUND AND VIBRATION, 2021, 501 (501)
  • [43] Inspection of Some Extremely Nonlinear Oscillators Using an Inventive Approach
    Moatimid, Galal M.
    Amer, T. S.
    Galal, A. A.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, : 1211 - 1221
  • [44] Determination of Limit Cycle by Hamiltonian Approach for Strongly Nonlinear Oscillators
    Xu, Lan
    He, Ji-Huan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (12) : 1097 - 1101
  • [45] Accurate analytical solutions to nonlinear oscillators by means of the Hamiltonian approach
    Akbarzade, M.
    Kargar, A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (17) : 2089 - 2094
  • [46] A Phase Model Approach for Synchronization Analysis of Coupled Nonlinear Oscillators
    Bonnin, Michele
    Corinto, Fernando
    Gilli, Marco
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 3385 - 3388
  • [47] Nonlinear Dynamics of Coupled Oscillators: State Space Energy Approach
    Stork, Milan
    Hrusak, Josef
    Mayer, Daniel
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 327 - 330
  • [48] A simple and unified approach to identify integrable nonlinear oscillators and systems
    Chandrasekar, VK
    Pandey, SN
    Senthilvelan, M
    Lakshmanan, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (02)
  • [49] A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
    Bosetto, E
    Serra, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (06): : 673 - 709
  • [50] He's Variational Approach to Multiple Coupled Nonlinear Oscillators
    Kaya, M. O.
    Durmaz, S.
    Demirbag, S. Altay
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (10) : 859 - 865