Power series approach to nonlinear oscillators

被引:2
|
作者
As'ad, Ata Abu [1 ]
Asad, Jihad [2 ,3 ]
机构
[1] Palestine Tech Univ Kadoorie, Dept Appl Math, Tulkarm, Palestine
[2] Palestine Tech Univ Kadoorie, Dept Phys, Tulkarm, Palestine
[3] Palestine Tech Univ Kadoorie, POB 7, Tulkarm 305, Palestine
关键词
nonlinear differential equation; equilibrium (fixed point); limit cycle; stability; semistable power series; simulation; ENERGY-BALANCE; HAMILTONIAN APPROACH; VARIATIONAL APPROACH; VIBRATIONS; SYSTEM; MOTION;
D O I
10.1177/14613484231188756
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this article, we introduce a nonlinear oscillator equation containing two strong linear terms. An approximate solution was obtained using power series approach. Furthermore, by introducing a parameter to the original equation, we fined the fixed points of the modified nonlinear oscillator equation and study stability analysis of these fixed points. On the other hand, we simulate the solution of the nonlinear oscillator equation and introduced many plots for different initial conditions. Finally, we make some plots concerning the phase portrait for different cases.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [21] A nonlinear adaptive approach to controlling chaotic oscillators
    Cao, YJ
    PHYSICS LETTERS A, 2000, 270 (3-4) : 171 - 176
  • [22] Max-min approach to nonlinear oscillators
    He, Ji-Huan
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (02) : 207 - 210
  • [23] Hamiltonian Approach to Multiple Coupled Nonlinear Oscillators
    Durmaz, S.
    Demirbag, S. Altay
    Kaya, M. O.
    ACTA PHYSICA POLONICA A, 2012, 121 (01) : 47 - 49
  • [24] Power flow between three series coupled oscillators
    Sun, JC
    Wang, C
    Sun, ZH
    JOURNAL OF SOUND AND VIBRATION, 1996, 189 (02) : 215 - 229
  • [25] Nonlinear Dynamics of Microwave Optoelectronic Oscillators: A Time Series Analysis
    Ustinov, A. B.
    Kondrashov, A. V.
    Kalinikos, B. A.
    2016 IEEE INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP), 2016, : 169 - 172
  • [26] Analysis of nonlinear oscillators using Volterra series in the frequency domain
    Li, L. M.
    Billings, S. A.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (02) : 337 - 355
  • [27] Analytical approaches to oscillators with nonlinear springs in parallel and series connections
    Sanmiguel-Rojas, E.
    Hidalgo-Martinez, M.
    Jimenez-Gonzalez, J. I.
    Martin-Alcantara, A.
    MECHANISM AND MACHINE THEORY, 2015, 93 : 39 - 52
  • [28] Synchronization of Nonlinear Oscillators in an LTI Electrical Power Network
    Johnson, Brian B.
    Dhople, Sairaj V.
    Hamadeh, Abdullah O.
    Krein, Philip T.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (03) : 834 - 844
  • [29] FUNCTIONAL-ANALYSIS OF NONLINEAR CIRCUITS - A GENERATING POWER-SERIES APPROACH
    LAMNABHI, M
    IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1986, 133 (05) : 375 - 384
  • [30] NONLINEAR H-INFINITY OPTIMIZATION - A CAUSAL POWER-SERIES APPROACH
    FOIAS, C
    GU, CX
    TANNEBAUM, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) : 185 - 207