Finite groups satisfying the independence property

被引:1
|
作者
Freedman, Saul D. [1 ]
Lucchini, Andrea [2 ]
Nemmi, Daniele [2 ]
Roney-Dougal, Colva M. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
[2] Univ Padua, Dipartimento Matemat, Tullio Levi-C Via Trieste 63, I-35121 Padua, Italy
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Generating sets; supersoluble groups; simple groups; POWER GRAPH; GENERATING SETS; PROBABILISTIC GENERATION; ELEMENTS; SUBGROUP; NUMBER;
D O I
10.1142/S021819672350025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a finite group G satisfies the independence property if, for every pair of distinct elements x and y of G, either {x, y} is contained in a minimal generating set for G or one of x and y is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups H contain an element s such that the maximal subgroups of H containing s, but not containing the socle of H, are pairwise non-conjugate.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条