Finite groups satisfying the independence property

被引:1
|
作者
Freedman, Saul D. [1 ]
Lucchini, Andrea [2 ]
Nemmi, Daniele [2 ]
Roney-Dougal, Colva M. [3 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
[2] Univ Padua, Dipartimento Matemat, Tullio Levi-C Via Trieste 63, I-35121 Padua, Italy
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Generating sets; supersoluble groups; simple groups; POWER GRAPH; GENERATING SETS; PROBABILISTIC GENERATION; ELEMENTS; SUBGROUP; NUMBER;
D O I
10.1142/S021819672350025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a finite group G satisfies the independence property if, for every pair of distinct elements x and y of G, either {x, y} is contained in a minimal generating set for G or one of x and y is a power of the other. We give a complete classification of the finite groups with this property, and in particular prove that every such group is supersoluble. A key ingredient of our proof is a theorem showing that all but three finite almost simple groups H contain an element s such that the maximal subgroups of H containing s, but not containing the socle of H, are pairwise non-conjugate.
引用
收藏
页码:509 / 545
页数:37
相关论文
共 50 条
  • [21] A NOTE ON FINITE-GROUPS SATISFYING PERMUTIZER CONDITION
    ZHANG, JP
    KEXUE TONGBAO, 1986, 31 (06): : 363 - 365
  • [22] ON FINITE P-GROUPS NOT SATISFYING THE HUGHES CONJECTURE
    KHUKHRO, EI
    SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (01) : 202 - 207
  • [23] FINITE-GROUPS SATISFYING THE CONDITION (N,N)
    ENDIMIONI, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (12): : 1245 - 1247
  • [24] On φ-π-property of subgroups of finite groups
    Qiu, Zhengtian
    Liu, Jianjun
    Chen, Guiyun
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 1982 - 1993
  • [25] On finite groups with the Magnus Property
    Garonzi, Martino
    Marion, Claude
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024,
  • [26] AN ARITHMETIC PROPERTY OF FINITE GROUPS
    SCHREIBER, S
    BULLETIN OF THE RESEARCH COUNCIL OF ISRAEL, 1961, F 10 (01): : 40 - &
  • [27] On the HallDπ-property for finite groups
    V. D. Mazurov
    D. O. Revin
    Siberian Mathematical Journal, 1997, 38 : 106 - 113
  • [28] The maximal property for finite groups
    Gagola, S
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (04): : 375 - 376
  • [29] Totally Permutable Products of Finite Groups Satisfying SC or PST
    Adolfo Ballester-Bolinches
    John Cossey
    Monatshefte für Mathematik, 2005, 145 : 89 - 94
  • [30] Totally permutable products of finite groups satisfying SC or PST
    Ballester-Bolinches, A
    Cossey, J
    MONATSHEFTE FUR MATHEMATIK, 2005, 145 (02): : 89 - 94