FUNDAMENTAL THEOREMS FOR TIMELIKE SURFACES IN THE MINKOWSKI 4-SPACE

被引:0
|
作者
Bencheva, Victoria [1 ]
Milousheva, Velichka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Akad G Bonchev St,Bl 8, Sofia 1113, Bulgaria
来源
关键词
timelike surfaces; fundamental theorems; MEAN-CURVATURE VECTOR;
D O I
10.7546/CRABS.2024.02.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we study timelike surfaces free of minimal points in the four-dimensional Minkowski space. For each such surface we introduce a geometrically determined pseudo-orthonormal frame field and writing the derivative formulas with respect to this moving frame field and using the integrability conditions, we obtain a system of six functions satisfying some natural conditions. In the general case, we prove a Fundamental Bonnet -type theorem (existence and uniqueness theorem) stating that these six functions, satisfying the natural conditions, determine the surface up to a motion. In some particular cases, we reduce the number of functions and give the fundamental theorems.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条