FUNDAMENTAL THEOREMS FOR TIMELIKE SURFACES IN THE MINKOWSKI 4-SPACE

被引:0
|
作者
Bencheva, Victoria [1 ]
Milousheva, Velichka [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Akad G Bonchev St,Bl 8, Sofia 1113, Bulgaria
来源
关键词
timelike surfaces; fundamental theorems; MEAN-CURVATURE VECTOR;
D O I
10.7546/CRABS.2024.02.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we study timelike surfaces free of minimal points in the four-dimensional Minkowski space. For each such surface we introduce a geometrically determined pseudo-orthonormal frame field and writing the derivative formulas with respect to this moving frame field and using the integrability conditions, we obtain a system of six functions satisfying some natural conditions. In the general case, we prove a Fundamental Bonnet -type theorem (existence and uniqueness theorem) stating that these six functions, satisfying the natural conditions, determine the surface up to a motion. In some particular cases, we reduce the number of functions and give the fundamental theorems.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [31] Bjorling problem for timelike surfaces in the Lorentz-Minkowski space
    Chaves, R. M. B.
    Dussan, M. P.
    Magid, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 481 - 494
  • [32] Families of Gauss indicatrices on smooth surfaces in pseudo-spheres in the Minkowski 4-space
    Tari, Farid
    JOURNAL OF SINGULARITIES, 2010, 1 : 116 - 133
  • [33] On the curvatures of timelike circular surfaces in Lorentz-Minkowski space
    Li, Jing
    Yang, Zhichao
    Li, Yanlin
    Abdel-Baky, R. A.
    Saad, M. Khalifa
    FILOMAT, 2024, 38 (04) : 1423 - 1437
  • [34] A study on timelike circular surfaces in Minkowski 3-space
    Abdel-Baky, Rashad A.
    Alluhaibi, Nadia
    Ali, Akram
    Mofarreh, Fatemah
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (06)
  • [35] SOME CLASSIFICATIONS OF LORENTZIAN SURFACES WITH FINITE TYPE GAUSS MAP IN THE MINKOWSKI 4-SPACE
    Turgay, Nurettin Cenk
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (03) : 415 - 427
  • [36] Singularities for Timelike Developable Surfaces in Minkowski 3-Space
    Li, Yanlin
    Chen, Zhizhi
    Nazra, Sahar H. H.
    Abdel-Baky, Rashad A. A.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [37] Surfaces with Parallel Normalized Mean Curvature Vector Field in Euclidean or Minkowski 4-Space
    Ganchev, Georgi
    Milousheva, Velichka
    FILOMAT, 2019, 33 (04) : 1135 - 1145
  • [38] INDECOMPOSABLE SURFACES IN 4-SPACE
    LIVINGSTON, C
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 132 (02) : 371 - 378
  • [39] Rotational hypersurfaces in Lorentz-Minkowski 4-space
    Altin, Mustafa
    Kazan, Ahmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1409 - 1433
  • [40] NULL CURVES OF CONSTANT BREADTH IN MINKOWSKI 4-SPACE
    Altunkaya, Bulent
    Aksoyak, Ferdag Kahraman
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 451 - 456