Timelike surfaces with zero mean curvature in Minkowski 4-space

被引:8
|
作者
Ganchev, Georgi [1 ]
Milousheva, Velichka [1 ,2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] L Karavelov Civil Engn Higher Sch, Sofia 1373, Bulgaria
关键词
SPACE; ROTATION; R-4;
D O I
10.1007/s11856-012-0169-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On any timelike surface with zero mean curvature in the four-dimensional Minkowski space we introduce special geometric (canonical) parameters and prove that the Gauss curvature and the normal curvature of the surface satisfy a system of two natural partial differential equations. Conversely, any two solutions to this system determine a unique (up to a motion) timelike surface with zero mean curvature so that the given parameters are canonical. We find all timelike surfaces with zero mean curvature in the class of rotational surfaces of Moore type. These examples give rise to a one-parameter family of solutions to the system of natural partial differential equations describing timelike surfaces with zero mean curvature.
引用
收藏
页码:413 / 433
页数:21
相关论文
共 50 条