Multiscale Superpixel-Guided Weighted Graph Convolutional Network for Polarimetric SAR Image Classification

被引:2
|
作者
Wang, Ru [1 ]
Nie, Yinju [1 ]
Geng, Jie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature representation; graph convolutional networks; polarimetric synthetic aperture radar (PolSAR) image classification; superpixels; SCATTERING MODEL; DECOMPOSITION;
D O I
10.1109/JSTARS.2024.3355290
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polarimetric synthetic aperture radar (PolSAR) has attracted more attentions because of its excellent observation ability, and PolSAR image classification has become one of the significant tasks in remote sensing interpretation. Various types and sizes of land cover objects lead to misclassification, especially in the boundaries of different categories. To solve these issues, a multiscale superpixel-guided weighted graph convolutional network (MSGWGCN) is proposed for classifying PolSAR images. In the proposed MSGWGCN, multiscale superpixel features are imported into the weighted graph convolutional network to obtain higher level representation, which can make full use of land cover object information in PolSAR images. Moreover, to fuse pixel-level features at different scales, a multiscale feature cascade fusion module is built, which plays an important role in preserving classification details. Experiments on three PolSAR datasets indicate that the proposed MSGWGCN performs better than other advanced methods on PolSAR classification task.
引用
收藏
页码:3727 / 3741
页数:15
相关论文
共 50 条
  • [31] Multiscale Short and Long Range Graph Convolutional Network for Hyperspectral Image Classification
    Zhu, Wenxiang
    Zhao, Chunhui
    Feng, Shou
    Qin, Boao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Evaluation of ForestPA for VHR RS image classification using spectral and superpixel-guided morphological profiles
    Samat, Alim
    Liu, Sicong
    Persello, Claudio
    Li, Erzhu
    Miao, Zelang
    Abuduwaili, Jilili
    EUROPEAN JOURNAL OF REMOTE SENSING, 2019, 52 (01) : 107 - 121
  • [33] FULLY CONVOLUTIONAL NETWORK WITH POLARIMETRIC MANIFOLD FOR SAR IMAGERY CLASSIFICATION
    Tu, Mingxia
    Han, Gong
    Liu, Xinlong
    He, Chu
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3563 - 3566
  • [34] Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification
    Zhang, Zhimian
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12): : 7177 - 7188
  • [35] Multiscale Feature Search-Based Graph Convolutional Network for Hyperspectral Image Classification
    Wu, Ke
    Zhan, Yanting
    An, Ying
    Li, Suyi
    REMOTE SENSING, 2024, 16 (13)
  • [36] Hyperspectral Image Classification With Small Training Sample Size Using Superpixel-Guided Training Sample Enlargement
    Zheng, Chengyong
    Wang, Ningning
    Cui, Jing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7307 - 7316
  • [37] Adaptive convolutional network for SAR image classification
    Xia, Shuang
    Yu, Ze
    Yu, JinDong
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (20): : 6868 - 6872
  • [38] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [39] Water Extraction in PolSAR Image Based on Superpixel and Graph Convolutional Network
    Wan, Haoming
    Tang, Panpan
    Tian, Bangsen
    Yu, Hongbo
    Jin, Caifeng
    Zhao, Bo
    Wang, Hui
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [40] Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification
    Zhang, Huaizhong
    Altham, Callum
    Trovati, Marcello
    Zhang, Ce
    Rolland, Iain
    Lawal, Lanre
    Wegbu, Dozien
    Ajienka, Nemitari
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7631 - 7642