Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification

被引:0
|
作者
Zhang, Huaizhong [1 ]
Altham, Callum [1 ]
Trovati, Marcello [1 ]
Zhang, Ce [1 ]
Rolland, Iain [1 ]
Lawal, Lanre [1 ]
Wegbu, Dozien [1 ]
Ajienka, Nemitari [1 ]
机构
[1] Edge Hill Univ, Dept Comp Sci, Ormskirk LP39 4QP, England
基金
英国科研创新办公室;
关键词
Convolutional neural networks; Adaptation models; Training; Remote sensing; Adaptive systems; Feature extraction; Data models; Convolutional neural network (CNN); land use (LU) classification; superpixel embedding CNN; very fine spatial resolution remotely sensed imagery; IMAGERY;
D O I
10.1109/JSTARS.2022.3203234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, a large number of remote sensing images with different resolutions are available for Earth observation and land monitoring, which are inevitably demanding intelligent analysis techniques for accurately identifying and classifying land use (LU). This article proposes an adaptive multiscale superpixel embedding convolutional neural network architecture (AMUSE-CNN) for tackling LU classification. Initially, the images are parsed via the superpixel representation so that the object-based analysis (via a superpixel embedding convolutional neural network scheme) can be carried out with the pixel context and neighborhood information. Then, a multiscale convolutional neural network (MS-CNN) is proposed to classify the superpixel-based images by identifying object features across a variety of scales simultaneously, in which multiple window sizes are used to fit to the various geometries of different LU classes. Furthermore, a proposed adaptive strategy is applied to best exert the classification capability of the MS-CNN. Subsequently, two modules are developed to fully implement the AMUSE-CNN architecture. More specifically, Module I is to determine the most suitable classes for each window size (scale) by applying majority voting to a series of MS-CNNs Module II carries out the classification of the classes identified in Module I for the given scale used in the MS-CNN and, therefore, complete the LU classification of the entire classes. The proposed AMUSE-CNN architecture is both quantitatively and qualitatively validated using remote sensing data collected from two cities, Kano and Lagos in Nigeria, due to the spatially complex LU distribution. Experimental results show the superior performance of our approach against several state-of-the-art techniques.
引用
收藏
页码:7631 / 7642
页数:12
相关论文
共 50 条
  • [1] Land cover classification for polarimetric SAR image using convolutional neural network and superpixel
    Ma Y.
    Li Y.
    Zhu L.
    Progress In Electromagnetics Research B, 2019, 83 (2019): : 111 - 128
  • [2] Comparison of land use classification based on convolutional neural network
    Li, Mengyao
    Wang, Liuming
    Wang, Junxiao
    Li, Xingong
    She, Jiangfeng
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01)
  • [3] PolSAR Image Classification With Multiscale Superpixel-Based Graph Convolutional Network
    Cheng, Jianda
    Zhang, Fan
    Xiang, Deliang
    Yin, Qiang
    Zhou, Yongsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Superpixel Image Classification with Graph Convolutional Neural Networks Based on Learnable Positional Embedding
    Bae, Ji-Hun
    Yu, Gwang-Hyun
    Lee, Ju-Hwan
    Vu, Dang Thanh
    Anh, Le Hoang
    Kim, Hyoung-Gook
    Kim, Jin-Young
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [5] Scene Classification Based on Multiscale Convolutional Neural Network
    Liu, Yanfei
    Zhong, Yanfei
    Qin, Qianqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7109 - 7121
  • [6] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P.B.
    Mahendra, H.N.
    Rama Subramoniam, S.
    Mallikarjunaswamy, S.
    Applied Computing and Geosciences, 25
  • [7] Impact of convolutional neural network and FastText embedding on text classification
    Umer, Muhammad
    Imtiaz, Zainab
    Ahmad, Muhammad
    Nappi, Michele
    Medaglia, Carlo
    Choi, Gyu Sang
    Mehmood, Arif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) : 5569 - 5585
  • [8] IMAGE SEGMENTATION AND CLASSIFICATION WITH SLIC SUPERPIXEL AND CONVOLUTIONAL NEURAL NETWORK IN FOREST CONTEXT
    Martins, Jose
    Marcato Junior, Jose
    Menezes, Geazy
    Pistori, Hemerson
    Sant'Ana, Diego
    Goncalves, Wesley
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6543 - 6546
  • [9] Convolutional Neural Network with Contextualized Word Embedding for Text Classification
    Fan, Gaoyang
    Zhu, Cui
    Zhu, Wenjun
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [10] Impact of convolutional neural network and FastText embedding on text classification
    Muhammad Umer
    Zainab Imtiaz
    Muhammad Ahmad
    Michele Nappi
    Carlo Medaglia
    Gyu Sang Choi
    Arif Mehmood
    Multimedia Tools and Applications, 2023, 82 : 5569 - 5585