ON THE BAYESIAN ZERO-INFLATED SPATIO-TEMPORAL MODELLING OF DENGUE HEMORRHAGIC FEVER

被引:0
|
作者
Sanson, Daniel R. [1 ]
Lim-Polestico, Daisy Lou
机构
[1] Mindanao State Univ, Main Campus, Marawi, Philippines
关键词
Bayesian zero-inflated Poisson distribution; zero-inflated negative binomial distribution; spatio-temporal model;
D O I
10.17654/0972361723062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study focuses on improving the convergence rates of parameter estimates for two Bayesian spatio-temporal models, namely the Bayesian zero-inflated Poisson spatio-temporal (BZIP S-T) distribution and the Bayesian zero-inflated negative binomial spatiotemporal (BZINB S-T) distribution, employed for modeling dengue hemorrhagic fever (DHF) data in the Caraga region, Philippines. The predictive performance of these models, incorporating meteorological factors such as rainfall and population density, is enhanced through the implementation of an overrelaxation algorithm designed to expedite convergence. Markov chain Monte Carlo (MCMC) techniques, specifically utilizing the full conditional distribution, are utilized for parameter estimation. Our findings reveal that the application of the overrelaxation algorithm yields significant improvements in the convergence rates of parameter estimates, with acceleration percentages of up to 67% and 40% observed for the BZIP S-T and BZINB S-T models, respectively. Notably, both the models identify rainfall and population density as statistically significant predictors for DHF case predictions in the Caraga region, Philippines. While the BZINB S-T model exhibits the smallest deviance, both the models prove to be valuable tools for predicting DHF cases in the region, contributing to the advancement of epidemiological research and public health planning.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 50 条
  • [31] Modelling correlated zero-inflated count data
    Dobbie, MJ
    Welsh, AH
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (04) : 431 - 444
  • [32] Surveillance of dengue vectors using spatio-temporal Bayesian modeling
    Costa, Ana Carolina C.
    Codeco, Claudia T.
    Honorio, Nildimar A.
    Pereira, Glaucio R.
    Pinheiro, Carmen Fatima N.
    Nobre, Aline A.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
  • [33] Surveillance of dengue vectors using spatio-temporal Bayesian modeling
    Ana Carolina C. Costa
    Cláudia T. Codeço
    Nildimar A. Honório
    Gláucio R. Pereira
    Carmen Fátima N. Pinheiro
    Aline A. Nobre
    BMC Medical Informatics and Decision Making, 15
  • [34] Bayesian spatio-temporal analysis of dengue transmission in Lao PDR
    Soukavong, Mick
    Thinkhamrop, Kavin
    Pratumchart, Khanittha
    Soulaphy, Chanthavy
    Xangsayarath, Phonepadith
    Mayxay, Mayfong
    Phommachanh, Sysavanh
    Kelly, Matthew
    Wangdi, Kinley
    Clements, Archie C. A.
    Suwannatrai, Apiporn T.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Predicting cyanobacteria abundance with Bayesian zero-inflated models
    Zhang, Yirao
    Peleato, Nicolas M.
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (06) : 2161 - 2176
  • [36] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [37] A Bayesian analysis of zero-inflated generalized Poisson model
    Angers, JF
    Biswas, A
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 42 (1-2) : 37 - 46
  • [38] Default Bayesian testing for the zero-inflated Poisson distribution
    Han, Yewon
    Hwang, Haewon
    Ng, Hon keung tony
    Kim, Seong w.
    STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 623 - 634
  • [39] Full Bayesian significance test for zero-inflated distributions
    Rodrigues, J
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (02) : 299 - 307
  • [40] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951