ON THE BAYESIAN ZERO-INFLATED SPATIO-TEMPORAL MODELLING OF DENGUE HEMORRHAGIC FEVER

被引:0
|
作者
Sanson, Daniel R. [1 ]
Lim-Polestico, Daisy Lou
机构
[1] Mindanao State Univ, Main Campus, Marawi, Philippines
关键词
Bayesian zero-inflated Poisson distribution; zero-inflated negative binomial distribution; spatio-temporal model;
D O I
10.17654/0972361723062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study focuses on improving the convergence rates of parameter estimates for two Bayesian spatio-temporal models, namely the Bayesian zero-inflated Poisson spatio-temporal (BZIP S-T) distribution and the Bayesian zero-inflated negative binomial spatiotemporal (BZINB S-T) distribution, employed for modeling dengue hemorrhagic fever (DHF) data in the Caraga region, Philippines. The predictive performance of these models, incorporating meteorological factors such as rainfall and population density, is enhanced through the implementation of an overrelaxation algorithm designed to expedite convergence. Markov chain Monte Carlo (MCMC) techniques, specifically utilizing the full conditional distribution, are utilized for parameter estimation. Our findings reveal that the application of the overrelaxation algorithm yields significant improvements in the convergence rates of parameter estimates, with acceleration percentages of up to 67% and 40% observed for the BZIP S-T and BZINB S-T models, respectively. Notably, both the models identify rainfall and population density as statistically significant predictors for DHF case predictions in the Caraga region, Philippines. While the BZINB S-T model exhibits the smallest deviance, both the models prove to be valuable tools for predicting DHF cases in the region, contributing to the advancement of epidemiological research and public health planning.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 50 条
  • [21] Modelling spatio-temporal data of dengue fever using generalized additive mixed models
    Cabrera, M.
    Taylor, G.
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2019, 28 : 1 - 13
  • [22] Spatio-Temporal Modelling of Dengue Fever Patterns in Peninsular Malaysia from 2015–2017
    Nurul Syafiah Abd Naeeim
    Nuzlinda Abdul Rahman
    Nor Azura Md. Ghani
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 345 - 364
  • [23] Efficient Gaussian Process-Based Inference for Modelling Spatio-Temporal Dengue Fever
    Albinati, Julio
    Meira, Wagner, Jr.
    Pappa, Gisele L.
    Wilson, Andrew G.
    2017 6TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017, : 61 - 66
  • [24] Bayesian clustering of multiple zero-inflated outcomes
    Franzolini, Beatrice
    Cremaschi, Andrea
    van den Boom, Willem
    De Iorio, Maria
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2247):
  • [25] Bayesian Analysis for the Zero-inflated Regression Models
    Jane, Hakjin
    Kang, Yunhee
    Lee, S.
    Kim, Seong W.
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (04) : 603 - 613
  • [26] BAYESIAN SPATIAL-TEMPORAL MODELING OF ECOLOGICAL ZERO-INFLATED COUNT DATA
    Wang, Xia
    Chen, Ming-Hui
    Kuo, Rita C.
    Dey, Dipak K.
    STATISTICA SINICA, 2015, 25 (01) : 189 - 204
  • [27] A Bayesian approach to zero-inflated data in extremes
    Quadros Gramosa, Alexandre Henrique
    do Nascimento, Fernando Ferraz
    Castro Morales, Fidel Ernesto
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (17) : 4150 - 4161
  • [28] Bayesian analysis of zero-inflated regression models
    Ghosh, SK
    Mukhopadhyay, P
    Lu, JC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (04) : 1360 - 1375
  • [29] Spatio-Temporal Modelling of Dengue Fever Patterns in Peninsular Malaysia from 2015-2017
    Abd Naeeim, Nurul Syafiah
    Rahman, Nuzlinda Abdul
    Ghani, Nor Azura Md
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (SUPPL 1) : 345 - 364
  • [30] Spatio-Temporal Analysis of Dengue Fever Cases: A Retrospective Study
    Nayak, M. Siva Durga Prasad
    Narayan, K. A.
    JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2020, 14 (04) : LC5 - LC8