Graphs of continuous functions and fractal dimensions

被引:16
|
作者
Verma, Manuj [1 ]
Priyadarshi, Amit [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Box dimension; Graph of function; Continuous function; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that, for any beta is an element of[1,2], a given strictly positive (or strictly negative) real-valued continuous function on [0, 1] whose graph has the upper box dimension less than or equal to beta can be decomposed as a product of two real-valued continuous functions on [0, 1] whose graphs have upper box dimensions equal to beta. We also obtain a formula for the upper box dimension of every element of a ring of polynomials in a finite number of continuous functions on [0, 1] over the field R.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS
    Yu, Binyan
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [32] Fractal zeta functions and complex dimensions of relative fractal drums
    Lapidus, Michel L.
    Radunovic, Goran
    Zubrinic, Darko
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) : 321 - 378
  • [33] Dimensions of graphs of prevalent continuous maps
    Balka, Richard
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (04) : 407 - 428
  • [34] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Binyan Yu
    Yongshun Liang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2805 - 2836
  • [35] Approximation with continuous functions preserving fractal dimensions of the Riemann-Liouville operators of fractional calculus
    Yu, Binyan
    Liang, Yongshun
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2805 - 2836
  • [36] ON THE DECOMPOSITION OF CONTINUOUS FUNCTIONS AND DIMENSIONS
    Liu, Jia
    Liu, Dezhi
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (01)
  • [37] Dimensions of prevalent continuous functions
    Gruslys, V.
    Jonusas, J.
    Mijovic, V.
    Ng, O.
    Olsen, L.
    Petrykiewicz, I.
    MONATSHEFTE FUR MATHEMATIK, 2012, 166 (02): : 153 - 180
  • [38] Dimensions of prevalent continuous functions
    V. Gruslys
    J. Jonušas
    V. Mijović
    O. Ng
    L. Olsen
    I. Petrykiewicz
    Monatshefte für Mathematik, 2012, 166 : 153 - 180
  • [39] Continuous functions with impermeable graphs
    Buczolich, Zoltan
    Leobacher, Gunther
    Steinicke, Alexander
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (10) : 4778 - 4805
  • [40] Dimensions of new fractal functions and associated measures
    Verma, Manuj
    Priyadarshi, Amit
    NUMERICAL ALGORITHMS, 2023, 94 (02) : 817 - 846