An asymptotic analysis and stability for a class of focusing Sobolev critical nonlinear Schr?dinger equations

被引:0
|
作者
Van Au, Vo [1 ,2 ]
Meng, Fanfei [3 ]
机构
[1] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam
[2] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
[3] Qiyuan Lab, Beijing 100095, Peoples R China
关键词
Nonlinear Schr?dinger equation; Asymptotic behaviors; Critical Sobolev exponent; GLOBAL WELL-POSEDNESS; LINEAR SCHRODINGER-EQUATIONS; SCATTERING; MASS;
D O I
10.1016/j.jde.2023.02.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of focusing nonlinear Schrodinger equations involving power-type nonlinearity with critical Sobolev exponent ⠂(i partial differential partial differential t+⠃)u+ |u|4 N-2s u = 0, in R+ x RN, u = u0(x) e H1(RN) n L2(RN, |x|2dx), for t = 0, x e RN, where 2 N-2s =: p ⠄ be the critical Sobolev exponent with s < N2 . For dimension N > 1, the initial data u0 belongs to the energy space and | center dot |u0 e L2(RN) and the power index ssatisfies [0, 1] ⠆s= sc= 2N - p ⠄1, we prove that the problem is non-global existence in H1(RN) (here, finite-time blow-up occurs) with the energy of initial data E[u0] is negative. Moreover, we establish the stability for the solutions with the lower bound and the global a priori upper bound in dimension N > 2 related conservation laws. The motivation for this paper is inspired by the mass critical case with s = 0 of the celebrated result of B. Dodson [9] and the work of R. Killip and M. Visan [18] represented with energy critical case for s = 1. Our new results mention to nonlinear Schrodinger equation for interpolating between mass critical or mass super-critical (s > 0) and energy sub-critical or energy critical (s < 1).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 50 条
  • [41] Normalized solutions for nonlinear Schrödinger equation involving potential and Sobolev critical exponent
    Jin, Zhen-Feng
    Zhang, Weimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [42] Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth
    Chao Ji
    Vicenţiu D. Rădulescu
    Israel Journal of Mathematics, 2021, 241 : 465 - 500
  • [43] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [44] Robustness and stability of doubly periodic patterns of the focusing nonlinear Schrödinger equation
    Yin, H. M.
    Li, J. H.
    Zheng, Z.
    Chiang, K. S.
    Chow, K. W.
    CHAOS, 2024, 34 (01)
  • [45] Asymptotic profiles for a nonlinear Schrödinger equation with critical combined powers nonlinearity
    Shiwang Ma
    Vitaly Moroz
    Mathematische Zeitschrift, 2023, 304
  • [46] Standing waves with a critical frequency for nonlinear Schrödinger equations, II
    Jaeyoung Byeon
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2003, 18 : 207 - 219
  • [47] Existence and stability results on a class of nonlinear Schrödinger equations in bounded domains with Dirichlet boundary conditions
    Ghimenti M.
    Kandilakis D.
    Magiropoulos M.
    European Journal of Mathematics, 2015, 1 (4) : 773 - 798
  • [48] Stability of Standing Waves for Nonlinear Schrödinger Equations with Inhomogeneous Nonlinearities
    Anne De Bouard
    Reika Fukuizumi
    Annales Henri Poincaré, 2005, 6 : 1157 - 1177
  • [49] Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials
    J. Zhang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 498 - 503
  • [50] Normalized Solutions of Non-autonomous Schrödinger Equations Involving Sobolev Critical Exponent
    Yang, Chen
    Yu, Shu-Bin
    Tang, Chun-Lei
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)