EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR CRITICAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN ON THE HEISENBERG GROUP

被引:0
|
作者
Bai, Shujie [1 ]
Song, Yueqiang [1 ]
Repovs, Dusan D. [2 ,3 ,4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Peoples R China
[2] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[4] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
来源
基金
中国国家自然科学基金;
关键词
Fractional concentration-compactness principle; Krasnoselskii genus; Kirchhoff-Choquard type equations; Heisenberg group; SCHRODINGER-HARDY SYSTEMS;
D O I
10.23952/jnva.8.2024.1.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for the following Kirchhoff-Choquard type equation involving the fractional p-Laplacian on the Heisenberg group:M(||u||(p)(mu))(mu(-Delta)(s)(p)u+V(xi)|u|(p-2)u) = f(xi,u)+integral N-H (|u(eta)|Q*)(lambda)/ (|eta-1 xi|)lambda d eta|u|Q* (-2)(lambda )u in H-N, where (Delta)(s)(p) is the fractional p-Laplacian on the Heisenberg group HN, M is the Kirchhoff function, V(xi) is the potential function, 0 < s < 1, 1 < p < (N)/(s) , mu > 0, f (xi,u) is the nonlinear function, 0 < lambda < Q, Q = 2N+2, and Q*(lambda)= (2Q-lambda)/( Q-2) is the Sobolev critical exponent. Using the Krasnoselskii genus theorem, the existence of infinitely many solutions is obtained if mu is sufficiently large. In addition, using the fractional version of the concentrated compactness principle, we prove that problem has m pairs of solutions if mu is sufficiently small. As far as we know, the results of our study are new even in the Euclidean case.
引用
下载
收藏
页码:143 / 166
页数:24
相关论文
共 50 条