A super-localized generalized finite element method

被引:6
|
作者
Freese, Philip [1 ]
Hauck, Moritz [2 ,3 ]
Keil, Tim [4 ]
Peterseim, Daniel [5 ,6 ]
机构
[1] Hamburg Univ Technol, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] Univ Gothenburg, Dept Math Sci, S-41296 Gothenburg, Sweden
[3] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[4] Univ Munster, Inst Anal & Numer & Math Munster, Einsteinstr 62, D-48149 Munster, Germany
[5] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[6] Univ Augsburg, Ctr Adv Analyt & Predict Sci CAAPS, Univ Str 12a, D-86159 Augsburg, Germany
基金
欧洲研究理事会;
关键词
65N12; 65N30; HOMOGENIZATION; DECOMPOSITION; PARTITION;
D O I
10.1007/s00211-023-01386-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a novel multi-scale method for elliptic partial differential equations with arbitrarily rough coefficients. In the spirit of numerical homogenization, the method constructs problem-adapted ansatz spaces with uniform algebraic approximation rates. Localized basis functions with the same super-exponential localization properties as the recently proposed Super-Localized Orthogonal Decomposition enable an efficient implementation. The method's basis stability is enforced using a partition of unity approach. A natural extension to higher order is presented, resulting in higher approximation rates and enhanced localization properties. We perform a rigorous a priori and a posteriori error analysis and confirm our theoretical findings in a series of numerical experiments. In particular, we demonstrate the method's applicability for challenging high-contrast channeled coefficients.
引用
收藏
页码:205 / 235
页数:31
相关论文
共 50 条
  • [21] A FINITE-ELEMENT METHOD FOR LOCALIZED FAILURE ANALYSIS
    ORTIZ, M
    LEROY, Y
    NEEDLEMAN, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (02) : 189 - 214
  • [22] A super-element based on finite element method for latticed columns
    Fooladi, A.
    Banan, Mo. R.
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2015, 13 (2A) : 202 - 212
  • [23] Application of super-element method in finite element analysis of hub
    Yao, Xing-Jia
    Yang, Li-Dong
    Shan, Guang-Kun
    Shenyang Gongye Daxue Xuebao/Journal of Shenyang University of Technology, 2011, 33 (01): : 31 - 35
  • [24] A super-element based on finite element method for latticed columns
    Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz
    Fars
    71348-51156, Iran
    Int. J. Civ. Eng., 2A (202-212):
  • [25] Plasmon-enhanced fluorescence correlation spectroscopy for super-localized detection of nanoscale subcellular dynamics
    Lee, Hongki
    Rhee, Woo Joong
    Moon, Gwiyeong
    Im, Seongmin
    Son, Taehwang
    Shin, Jeon-Soo
    Kim, Donghyun
    BIOSENSORS & BIOELECTRONICS, 2021, 184
  • [26] The Generalized Finite Element method on eight-node element meshes
    Peng, ZQ
    Tu, JW
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2004, : 258 - 263
  • [27] A weak Galerkin generalized multiscale finite element method
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 68 - 81
  • [28] Higher order stable generalized finite element method
    Qinghui Zhang
    Uday Banerjee
    Ivo Babuška
    Numerische Mathematik, 2014, 128 : 1 - 29
  • [29] A NONCONFORMING GENERALIZED FINITE ELEMENT METHOD FOR TRANSMISSION PROBLEMS
    Mazzucato, Anna L.
    Nistor, Victor
    Qu, Qingqin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 555 - 576
  • [30] A mixed multiscale spectral generalized finite element method
    Alber, Christian
    Ma, Chupeng
    Scheichl, Robert
    NUMERISCHE MATHEMATIK, 2025, 157 (01) : 1 - 40