The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series

被引:0
|
作者
Stone, Renata F. [1 ,2 ]
Loose, Lais H. [1 ]
Melo, Moizes S. [1 ,3 ]
Bayer, Fabio M. [1 ,2 ,4 ]
机构
[1] Univ Fed Santa Maria, Dept Estat, BR-97105900 Santa Maria, Brazil
[2] Univ Fed Santa Maria, Programa Posgrad Engn Prod, BR-97105900 Santa Maria, Brazil
[3] Univ Fed Rio Grande, Programa Posgrad Ambientometria, BR-96203900 Rio Grande, Brazil
[4] Univ Fed Santa Maria, Santa Maria Space Sci Lab LACESM, BR-97105900 Santa Maria, Brazil
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
CHARMA model; Chen distribution; forecast; time series;
D O I
10.3390/sym15091675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new dynamic model for time series based on the Chen distribution, which is useful for modeling asymmetric, positive, continuous, and time-dependent data. The proposed Chen autoregressive moving average (CHARMA) model combines the flexibility of the Chen distribution with the use of covariates and lagged terms to model the conditional median response. We introduce the CHARMA structure and discuss conditional maximum likelihood estimation, hypothesis testing inference along with the estimator asymptotic properties of the estimator, diagnostic analysis, and forecasting. In particular, we provide closed-form expressions for the conditional score vector and the conditional information matrix. We conduct a Monte Carlo experiment to evaluate the introduced theory in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications in a wind-speed and maximum-temperature time-series dataset.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Autoregressive Moving Average Modeling of Area Control
    Pulendran, Shuthakini
    Tate, Joseph Euzebe
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [32] Estimation of causal continuous-time autoregressive moving average random fields
    Klueppelberg, Claudia
    Viet Son Pham
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (01) : 132 - 163
  • [33] Time series autoregressive integrated moving average modeling of test-day milk yields of dairy ewes
    Macciotta, NPP
    Cappio-Borlino, A
    Pulina, G
    JOURNAL OF DAIRY SCIENCE, 2000, 83 (05) : 1094 - 1103
  • [34] Autoregressive Moving Average Modeling in the Financial Sector
    Li, Peihao
    Jing, Chaoqun
    Liang, Tian
    Liu, Mingjia
    Chen, Zhenglin
    Guo, Li
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER, AND ELECTRICAL ENGINEERING (ICITACEE), 2015, : 68 - 71
  • [35] Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India
    Kulkarni G.E.
    Muley A.A.
    Deshmukh N.K.
    Bhalchandra P.U.
    Modeling Earth Systems and Environment, 2018, 4 (4) : 1435 - 1444
  • [36] Evaluating the healthcare practice by defining healthcare principles: An autoregressive integrated moving average model based on time series
    Yan, Jingjing
    INTERNATIONAL JOURNAL OF HEALTH PLANNING AND MANAGEMENT, 2021, 36 (02): : 561 - 578
  • [37] HIDDEN PERIODIC AUTOREGRESSIVE-MOVING AVERAGE MODELS IN TIME-SERIES DATA
    TIAO, GC
    GRUPE, MR
    BIOMETRIKA, 1980, 67 (02) : 365 - 373
  • [38] Using autoregressive integrated moving average models for time series analysis of observational data
    Wagner, Brandon
    Cleland, Kelly
    BMJ-BRITISH MEDICAL JOURNAL, 2023, 383
  • [39] Tutorial Paper: Autoregressive Integrated Moving Average Time Series Analysis for Measurement Professionals
    Barbe, Kurt
    Pien, Karen
    Raets, Camille
    Putman, Koen
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (04) : 27 - 36
  • [40] On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity
    Ling, SQ
    Li, WK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 1184 - 1194