The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series

被引:0
|
作者
Stone, Renata F. [1 ,2 ]
Loose, Lais H. [1 ]
Melo, Moizes S. [1 ,3 ]
Bayer, Fabio M. [1 ,2 ,4 ]
机构
[1] Univ Fed Santa Maria, Dept Estat, BR-97105900 Santa Maria, Brazil
[2] Univ Fed Santa Maria, Programa Posgrad Engn Prod, BR-97105900 Santa Maria, Brazil
[3] Univ Fed Rio Grande, Programa Posgrad Ambientometria, BR-96203900 Rio Grande, Brazil
[4] Univ Fed Santa Maria, Santa Maria Space Sci Lab LACESM, BR-97105900 Santa Maria, Brazil
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
CHARMA model; Chen distribution; forecast; time series;
D O I
10.3390/sym15091675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new dynamic model for time series based on the Chen distribution, which is useful for modeling asymmetric, positive, continuous, and time-dependent data. The proposed Chen autoregressive moving average (CHARMA) model combines the flexibility of the Chen distribution with the use of covariates and lagged terms to model the conditional median response. We introduce the CHARMA structure and discuss conditional maximum likelihood estimation, hypothesis testing inference along with the estimator asymptotic properties of the estimator, diagnostic analysis, and forecasting. In particular, we provide closed-form expressions for the conditional score vector and the conditional information matrix. We conduct a Monte Carlo experiment to evaluate the introduced theory in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications in a wind-speed and maximum-temperature time-series dataset.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Mixture autoregressive moving average model
    Department of Applied Mathematics, School of Science, Northwest Polytechnical University, Xi'an 710072, China
    不详
    Xitong Gongcheng Lilum yu Shijian, 2006, 11 (108-115):
  • [22] Estimation of the parameters of vector autoregressive moving average (VARMA) time series model with symmetric stable noise
    Sathe, Aastha M.
    Chowdhury, Raju
    Upadhye, N. S.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2021, 13 (2-3) : 206 - 214
  • [23] Estimation of the parameters of vector autoregressive moving average (VARMA) time series model with symmetric stable noise
    Aastha M. Sathe
    Raju Chowdhury
    N. S. Upadhye
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13 : 206 - 214
  • [24] Multivariate continuous-time autoregressive moving-average processes on cones
    Benth, Fred Espen
    Karbach, Sven
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 162 : 299 - 337
  • [25] Using Autoregressive Integrated Moving Average (ARIMA) for Prediction of Time Series Data
    Borkin, Dmitrii
    Nemeth, Martin
    Nemethova, Andrea
    INTELLIGENT SYSTEMS APPLICATIONS IN SOFTWARE ENGINEERING, VOL 1, 2019, 1046 : 470 - 476
  • [26] Autoregressive and moving average models for zero-inflated count time series
    Sathish, Vurukonda
    Mukhopadhyay, Siuli
    Tiwari, Rashmi
    STATISTICA NEERLANDICA, 2022, 76 (02) : 190 - 218
  • [27] DERIVATION OF THEORETICAL AUTOCOVARIANCE FUNCTION OF AUTOREGRESSIVE-MOVING AVERAGE TIME SERIES
    MCLEOD, I
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1975, 24 (02): : 255 - 256
  • [28] Rank-based estimation for autoregressive moving average time series models
    Andrews, Beth
    JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (01) : 51 - 73
  • [29] ON-LINE MONITORING OF POLLUTION CONCENTRATIONS WITH AUTOREGRESSIVE MOVING AVERAGE TIME SERIES
    Dienes, Christopher
    Aue, Alexander
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (03) : 239 - 261
  • [30] Online learning for vector autoregressive moving-average time series prediction
    Yang, Haimin
    Pan, Zhisong
    Tao, Qing
    Qiu, Junyang
    NEUROCOMPUTING, 2018, 315 : 9 - 17