A Survey of Deep Learning-Based Low-Light Image Enhancement

被引:11
|
作者
Tian, Zhen [1 ,2 ]
Qu, Peixin [1 ,2 ]
Li, Jielin [1 ,2 ]
Sun, Yukun [1 ,2 ]
Li, Guohou [1 ,2 ]
Liang, Zheng [3 ]
Zhang, Weidong [1 ,2 ]
机构
[1] Henan Inst Sci & Technol, Sch Informat Engn, Xinxiang 453003, Peoples R China
[2] Henan Inst Sci & Technol, Inst Comp Applicat, Xinxiang 453003, Peoples R China
[3] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
关键词
low-light Images; image degradation; image enhancement; deep learning; QUALITY ASSESSMENT; NETWORK;
D O I
10.3390/s23187763
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Images captured under poor lighting conditions often suffer from low brightness, low contrast, color distortion, and noise. The function of low-light image enhancement is to improve the visual effect of such images for subsequent processing. Recently, deep learning has been used more and more widely in image processing with the development of artificial intelligence technology, and we provide a comprehensive review of the field of low-light image enhancement in terms of network structure, training data, and evaluation metrics. In this paper, we systematically introduce low-light image enhancement based on deep learning in four aspects. First, we introduce the related methods of low-light image enhancement based on deep learning. We then describe the low-light image quality evaluation methods, organize the low-light image dataset, and finally compare and analyze the advantages and disadvantages of the related methods and give an outlook on the future development direction.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [41] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    Multimedia Systems, 2024, 30 (06)
  • [42] Light-Aware Contrastive Learning for Low-Light Image Enhancement
    Xu, W.U.
    Zhihui, L.A.I.
    Zhou, Jie
    Xianxu, H.O.U.
    Pedrycz, Witold
    Shen, Linlin
    ACM Transactions on Multimedia Computing, Communications and Applications, 2024, 20 (09)
  • [43] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (05) : 41 - 48
  • [44] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [45] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, (05) : 41 - 48
  • [46] Gradient-Based Low-Light Image Enhancement
    Tanaka, Masayuki
    Shibata, Takashi
    Okutomi, Masatoshi
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [47] Fusion-Based Low-Light Image Enhancement
    Wang, Haodian
    Wang, Yang
    Cao, Yang
    Zha, Zheng-Jun
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 121 - 133
  • [48] Low-light image enhancement based on virtual exposure
    Wang, Wencheng
    Yan, Dongliang
    Wu, Xiaojin
    He, Weikai
    Chen, Zhenxue
    Yuan, Xiaohui
    Li, Lun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [49] Low-light color image enhancement based on NSST
    Xiaochu W.
    Guijin T.
    Xiaohua L.
    Ziguan C.
    Suhuai L.
    Journal of China Universities of Posts and Telecommunications, 2019, 26 (05): : 41 - 48
  • [50] Low-Light Image Enhancement Based on Transmission Normalization
    Yang A.
    Song C.
    Zhang L.
    Bai H.
    Bu L.
    Yang, Aiping (yangaiping@tju.edu.cn), 2017, Tianjin University (50): : 997 - 1003