A Survey of Deep Learning-Based Low-Light Image Enhancement

被引:11
|
作者
Tian, Zhen [1 ,2 ]
Qu, Peixin [1 ,2 ]
Li, Jielin [1 ,2 ]
Sun, Yukun [1 ,2 ]
Li, Guohou [1 ,2 ]
Liang, Zheng [3 ]
Zhang, Weidong [1 ,2 ]
机构
[1] Henan Inst Sci & Technol, Sch Informat Engn, Xinxiang 453003, Peoples R China
[2] Henan Inst Sci & Technol, Inst Comp Applicat, Xinxiang 453003, Peoples R China
[3] Anhui Univ, Sch Internet, Hefei 230039, Peoples R China
关键词
low-light Images; image degradation; image enhancement; deep learning; QUALITY ASSESSMENT; NETWORK;
D O I
10.3390/s23187763
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Images captured under poor lighting conditions often suffer from low brightness, low contrast, color distortion, and noise. The function of low-light image enhancement is to improve the visual effect of such images for subsequent processing. Recently, deep learning has been used more and more widely in image processing with the development of artificial intelligence technology, and we provide a comprehensive review of the field of low-light image enhancement in terms of network structure, training data, and evaluation metrics. In this paper, we systematically introduce low-light image enhancement based on deep learning in four aspects. First, we introduce the related methods of low-light image enhancement based on deep learning. We then describe the low-light image quality evaluation methods, organize the low-light image dataset, and finally compare and analyze the advantages and disadvantages of the related methods and give an outlook on the future development direction.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [31] Learning-based Low Light Image Enhancement for Visual Odometry
    Liu, Xiadong
    Gao, Zhi
    Cheng, Huimin
    Wang, Pengfei
    Chen, Ben M.
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1143 - 1148
  • [32] A deep Retinex network for underwater low-light image enhancement
    Ji, Kai
    Lei, Weimin
    Zhang, Wei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (06)
  • [33] RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement
    Zhao, Zunjin
    Xiong, Bangshu
    Wang, Lei
    Ou, Qiaofeng
    Yu, Lei
    Kuang, Fa
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1076 - 1088
  • [34] Low-Light Image Enhancement via a Deep Hybrid Network
    Ren, Wenqi
    Liu, Sifei
    Ma, Lin
    Xu, Qianqian
    Xu, Xiangyu
    Cao, Xiaochun
    Du, Junping
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4364 - 4375
  • [35] Deep Pyramid Network for Low-Light Endoscopic Image Enhancement
    Yue, Guanghui
    Gao, Jie
    Cong, Runmin
    Zhou, Tianwei
    Li, Leida
    Wang, Tianfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3834 - 3845
  • [36] Single low-light image brightening using learning-based intensity mapping
    Wang, Xiaocheng
    Hu, Ruimin
    Xu, Xin
    NEUROCOMPUTING, 2022, 508 : 315 - 323
  • [37] Deep Color Consistent Network for Low-Light Image Enhancement
    Zhang, Zhao
    Zheng, Huan
    Hong, Richang
    Xu, Mingliang
    Yan, Shuicheng
    Wang, Meng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1889 - 1898
  • [38] A deep Retinex network for underwater low-light image enhancement
    Kai Ji
    Weimin Lei
    Wei Zhang
    Machine Vision and Applications, 2023, 34
  • [39] Deep Multi-path Low-light Image Enhancement
    Li, Siyuan
    Cheng, Qingsha S.
    Zhang, Jianguo
    THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2020), 2020, : 91 - 96
  • [40] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311