Deep Learning-Based Detection Technology for SQL Injection Research and Implementation

被引:1
|
作者
Sun, Hao [1 ]
Du, Yuejin [2 ]
Li, Qi [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Cyberspace Secur Acad, Beijing 100876, Peoples R China
[2] Beijing Qihoo Technol Co Ltd, Beijing 100015, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 16期
基金
中国国家自然科学基金;
关键词
deep learning; SQL injection detection; TextCNN; LSTM;
D O I
10.3390/app13169466
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amid the incessant evolution of the Internet, an array of cybersecurity threats has surged at an unprecedented rate. A notable antagonist within this plethora of attacks is the SQL injection assault, a prevalent form of Internet attack that poses a significant threat to web applications. These attacks are characterized by their extensive variety, rapid mutation, covert nature, and the substantial damage they can inflict. Existing SQL injection detection methods, such as static and dynamic detection and command randomization, are principally rule-based and suffer from low accuracy, high false positive (FP) rates, and false negative (FN) rates. Contemporary machine learning research on SQL injection attack (SQLIA) detection primarily focuses on feature extraction. The effectiveness of detection is heavily reliant on the precision of feature extraction, leading to a deficiency in tackling more intricate SQLIA. To address these challenges, we propose a novel SQLIA detection approach harnessing the power of an enhanced TextCNN and LSTM. This method begins by vectorizing the samples in the corpus and then leverages an improved TextCNN to extract local features. It then employs a Bidirectional LSTM (Bi-LSTM) network to decipher the sequence information inherent in the samples. Given LSTM's modest effectiveness for relatively long sequences, we further integrate an attention mechanism, reducing the distance between any two words in the sequence to one, thereby enhancing the model's effectiveness. Moreover, pre-trained word vector features acquired via BERT for transfer learning are incorporated into the feature section. Comparative experimental results affirm the superiority of our deep learning-based SQLIA detection approach, as it effectively elevates the SQLIA recognition rate while reducing both FP and FN rates.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Deep learning-based detection of eosinophilic esophagitis
    Guimaraes, Pedro
    Keller, Andreas
    Fehlmann, Tobias
    Lammert, Frank
    Casper, Markus
    ENDOSCOPY, 2022, 54 (03) : 299 - 304
  • [42] Deep Learning-Based Speed Breaker Detection
    VT M.A.
    Omar M.
    Ahamad J.
    Ahmad K.
    Khan M.A.
    SN Computer Science, 5 (5)
  • [43] Deep Learning-Based Intrusion Detection with Adversaries
    Wang, Zheng
    IEEE ACCESS, 2018, 6 : 38367 - 38384
  • [44] Research progress of surface defect detection technology based on deep learning
    Li J.
    Li H.
    Hu X.
    Li S.
    Qiao J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (03): : 774 - 790
  • [45] Research on CO concentration detection based on deep learning and TDLAS technology
    Wang, Yinsong
    Chen, Shixiong
    Kong, Qingmei
    Gao, Jianqiang
    OPTICS AND LASERS IN ENGINEERING, 2024, 181
  • [46] SQL Injection Detection using Machine Learning
    Joshi, Anamika
    Geetha, V
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICCICCT), 2014, : 1111 - 1115
  • [47] A Deep Learning-Based Classification Scheme for False Data Injection Attack Detection in Power System
    Ding, Yucheng
    Ma, Kang
    Pu, Tianjiao
    Wang, Xinying
    Li, Ran
    Zhang, Dongxia
    ELECTRONICS, 2021, 10 (12)
  • [48] Deep Reinforcement Learning-Based Detection Framework for False Data Injection Attacks in Power Systems
    Prabhu, T. N.
    Ranjeethkumar, C.
    Mohankumar, B.
    Rajaram, A.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2024, 14 (02): : 311 - 323
  • [49] Deep learning-based hybrid detection model for false data injection attacks in smart grid
    Yang, Hang
    Cao, Ruijia
    Pan, Huan
    Jin, Jiayi
    2023 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2023,
  • [50] Research on Real-time Online Intelligent Detection Technology of SQL Injection Behavior
    Li M.
    Xing G.
    Wang Z.
    Wang X.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2020, 47 (08): : 31 - 41