Deep Learning-Based Detection Technology for SQL Injection Research and Implementation

被引:1
|
作者
Sun, Hao [1 ]
Du, Yuejin [2 ]
Li, Qi [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Cyberspace Secur Acad, Beijing 100876, Peoples R China
[2] Beijing Qihoo Technol Co Ltd, Beijing 100015, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 16期
基金
中国国家自然科学基金;
关键词
deep learning; SQL injection detection; TextCNN; LSTM;
D O I
10.3390/app13169466
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amid the incessant evolution of the Internet, an array of cybersecurity threats has surged at an unprecedented rate. A notable antagonist within this plethora of attacks is the SQL injection assault, a prevalent form of Internet attack that poses a significant threat to web applications. These attacks are characterized by their extensive variety, rapid mutation, covert nature, and the substantial damage they can inflict. Existing SQL injection detection methods, such as static and dynamic detection and command randomization, are principally rule-based and suffer from low accuracy, high false positive (FP) rates, and false negative (FN) rates. Contemporary machine learning research on SQL injection attack (SQLIA) detection primarily focuses on feature extraction. The effectiveness of detection is heavily reliant on the precision of feature extraction, leading to a deficiency in tackling more intricate SQLIA. To address these challenges, we propose a novel SQLIA detection approach harnessing the power of an enhanced TextCNN and LSTM. This method begins by vectorizing the samples in the corpus and then leverages an improved TextCNN to extract local features. It then employs a Bidirectional LSTM (Bi-LSTM) network to decipher the sequence information inherent in the samples. Given LSTM's modest effectiveness for relatively long sequences, we further integrate an attention mechanism, reducing the distance between any two words in the sequence to one, thereby enhancing the model's effectiveness. Moreover, pre-trained word vector features acquired via BERT for transfer learning are incorporated into the feature section. Comparative experimental results affirm the superiority of our deep learning-based SQLIA detection approach, as it effectively elevates the SQLIA recognition rate while reducing both FP and FN rates.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Deep Learning-Based Atmospheric Visibility Detection
    Qu, Yawei
    Fang, Yuxin
    Ji, Shengxuan
    Yuan, Cheng
    Wu, Hao
    Zhu, Shengbo
    Qin, Haoran
    Que, Fan
    ATMOSPHERE, 2024, 15 (11)
  • [32] Deep Learning-Based Concept Detection in vitrivr
    Rossetto, Luca
    Parian, Mahnaz Amiri
    Gasser, Ralph
    Giangreco, Ivan
    Heller, Silvan
    Schuldt, Heiko
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 616 - 621
  • [33] Deep Learning-Based Arrhythmia Detection in Electrocardiograph
    Meng, Yang
    Liang, Guoxin
    Yue, Mei
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)
  • [34] Deep learning-based detection of seedling development
    Samiei, Salma
    Rasti, Pejman
    Ly Vu, Joseph
    Buitink, Julia
    Rousseau, David
    PLANT METHODS, 2020, 16 (01)
  • [35] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [36] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [37] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967
  • [38] Deep learning-based wall crack detection
    Zheng, Zujia
    Yang, Kui
    International Journal of Wireless and Mobile Computing, 2024, 27 (02) : 118 - 124
  • [39] A Deep Learning-Based Detection of Wrinkles on Skin
    Deepa, H.
    Gowrishankar, S.
    Veena, A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 25 - 37
  • [40] Deep learning-based detection of seedling development
    Salma Samiei
    Pejman Rasti
    Joseph Ly Vu
    Julia Buitink
    David Rousseau
    Plant Methods, 16