Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

被引:48
|
作者
Alsubaiea, Abdulmajeed M. [1 ]
Alfaqiha, Ibrahim [1 ]
Al-Osta, Mohammed A. [1 ,2 ]
Tounsi, Abdelouahed [1 ,2 ,3 ,4 ]
Chikh, Abdelbaki [4 ,5 ]
Mudhaffara, Ismail M. [1 ]
Tahira, Saeed [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Civil & Environm Engn, Dhahran 31261, Eastern Provinc, Saudi Arabia
[2] KFUPM, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
[3] Yonsei Univ, YFL Yonsei Frontier Lab, Seoul, South Korea
[4] Univ Djillali Liabes Sidi Bel Abbes, Fac Technol, Civil Engn Dept, Mat & Hydrol Lab, Sidi Bel Abbes, Algeria
[5] Univ Ibn Khaldoun, BP 78 Zaaroura, Tiaret 14000, Algeria
来源
COMPUTERS AND CONCRETE | 2023年 / 32卷 / 01期
关键词
CNT-reinforced beam; free vibration; functionally graded materials; porosity; viscoelastic foundation; LAMINATED COMPOSITE; SHEAR DEFORMATION; BUCKLING ANALYSIS; SANDWICH BEAMS; PLATE;
D O I
10.12989/cac.2023.32.1.075
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [41] Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections
    Peng, Xiaobo
    Xu, Jiang
    Yang, Echuan
    Li, Yinghui
    Yang, Jie
    ACTA MECHANICA, 2022, 233 (10) : 4161 - 4177
  • [42] Free Vibration and Buckling Analysis of Sandwich Beams with Functionally Graded Carbon Nanotube-Reinforced Composite Face Sheets
    Wu, Helong
    Kitipornchai, Sritawat
    Yang, Jie
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2015, 15 (07)
  • [43] Vibration analysis of functionally graded carbon nanotube-reinforced composite open cylindrical shells with damping film embedded
    Zhai, Yanchun
    Li, Feng
    Wang, Xiaoying
    Qiao, Huaying
    Wan, Zhiyuan
    Zhou, Yuesong
    POLYMER COMPOSITES, 2024, : 278 - 293
  • [44] Dynamic property of functionally graded carbon nanotube-reinforced composite plates with viscoelastic core
    Zhai, Yanchun
    Yu, Xiao
    Yue, Xiujie
    Wang, Penghao
    Zhang, Ping
    COMPOSITE STRUCTURES, 2021, 275
  • [45] Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates
    Shen, Hui-Shen
    Zhang, Chen-Li
    MATERIALS & DESIGN, 2010, 31 (07) : 3403 - 3411
  • [46] NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells
    Nguyen, Tan N.
    Thai, Chien H.
    Nguyen-Xuan, H.
    Lee, Jaehong
    COMPOSITE STRUCTURES, 2018, 203 : 349 - 360
  • [47] Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams
    Ebrahimi, Farzad
    Farazmandnia, Navid
    STEEL AND COMPOSITE STRUCTURES, 2018, 27 (02): : 149 - 159
  • [48] Study on the detailed and homogenized models for functionally graded carbon nanotube-reinforced composite beams
    Huiseop Jeong
    Jin-Rae Cho
    Journal of Mechanical Science and Technology, 2021, 35 : 4085 - 4092
  • [49] Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments
    Shen, Hui-Shen
    COMPOSITE STRUCTURES, 2009, 91 (01) : 9 - 19
  • [50] Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates
    Lei, Z. X.
    Zhang, L. W.
    Liew, K. M.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2015, 99 : 208 - 217