Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections

被引:6
|
作者
Peng, Xiaobo [1 ]
Xu, Jiang [1 ]
Yang, Echuan [2 ]
Li, Yinghui [1 ]
Yang, Jie [1 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Chengdu 610031, Peoples R China
[2] Chongqing Univ Technol, Sch Mech Engn, Chongqing 400054, Peoples R China
[3] Southwest Jiaotong Univ, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 610031, Peoples R China
关键词
CYLINDRICAL-SHELLS; NONLINEAR VIBRATION; DYNAMIC STABILITY; BUCKLING ANALYSIS; DEFORMATION; MODEL; FLUTTER; UNIFORM; PLATES;
D O I
10.1007/s00707-022-03320-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the influence of boundary relaxation on the free vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) imperfect beams is studied based on the first-order shear theory. An analysis model of the imperfect FG-CNTRC beams with arbitrary boundary conditions is presented using the boundary spring technique. The relaxation degree of the boundary is evaluated by introducing relaxation parameters, which are simulated by adjusting the stiffness of springs. The governing equations are derived using the Rayleigh-Ritz method and solved to obtain the frequencies of the beams with geometric imperfections and relaxed boundaries. The results reveal that boundary relaxation and geometric imperfections have a coupling influence on the vibration behavior of FG-CNTRC beams. The influence of boundary relaxation on frequency is highly dependent on the amplitude and modes of the geometric imperfection, but not sensitive to the geometric imperfection location. Boundary restraint enhancement reduces the influence of relaxation on the beam vibration. The influences of CNTs distribution pattern and volume fraction of on the vibration characteristics of the beams with relaxed boundaries are also discussed.
引用
收藏
页码:4161 / 4177
页数:17
相关论文
共 50 条
  • [1] Influence of the boundary relaxation on free vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections
    Xiaobo Peng
    Jiang Xu
    Echuan Yang
    Yinghui Li
    Jie Yang
    Acta Mechanica, 2022, 233 : 4161 - 4177
  • [2] Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections
    Wu, H. L.
    Yang, J.
    Kitipornchai, S.
    COMPOSITES PART B-ENGINEERING, 2016, 90 : 86 - 96
  • [3] Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams
    Ke, Liao-Liang
    Yang, Jie
    Kitipornchai, Sritawat
    COMPOSITE STRUCTURES, 2010, 92 (03) : 676 - 683
  • [4] On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams
    Tagrara, S. H.
    Benachour, Abdelkader
    Bouiadjra, Mohamed Bachir
    Tounsi, Abdelouahed
    STEEL AND COMPOSITE STRUCTURES, 2015, 19 (05): : 1259 - 1277
  • [5] Free Vibration and Buckling Analysis of Sandwich Beams with Functionally Graded Carbon Nanotube-Reinforced Composite Face Sheets
    Wu, Helong
    Kitipornchai, Sritawat
    Yang, Jie
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2015, 15 (07)
  • [6] Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures
    Zghal, S.
    Frikha, A.
    Dammak, F.
    APPLIED MATHEMATICAL MODELLING, 2018, 53 : 132 - 155
  • [7] Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams
    Ansari, R.
    Shojaei, M. Faghih
    Mohammadi, V.
    Gholami, R.
    Sadeghi, F.
    COMPOSITE STRUCTURES, 2014, 113 : 316 - 327
  • [8] Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment
    Ebrahimi, Farzad
    Farazmandnia, Navid
    ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 2018, 5 (01): : 107 - 128
  • [9] Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams
    Ke, Liao-Liang
    Yang, Jie
    Kitipornchai, Sritawat
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2013, 20 (01) : 28 - 37
  • [10] Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments
    Zhao, Jing-Lei
    Chen, Xu
    She, Gui-Lin
    Jing, Yan
    Bai, Ru-Qing
    Yi, Jin
    Pu, Hua-Yan
    Luo, Jun
    STEEL AND COMPOSITE STRUCTURES, 2022, 43 (06): : 797 - 808