Data-driven preventive maintenance for a heterogeneous machine portfolio

被引:2
|
作者
Deprez, Laurens [1 ,6 ]
Antonio, Katrien [2 ,3 ]
Arts, Joachim [1 ]
Boute, Robert [2 ,4 ,5 ]
机构
[1] Univ Luxembourg, Luxembourg Ctr Logist & Supply Chain Management, Esch Sur Alzette, Luxembourg
[2] Katholieke Univ Leuven, Fac Econ & Business, Leuven, Belgium
[3] Univ Amsterdam, Fac Econ & Business, Amsterdam, Netherlands
[4] Vlerick Business Sch, Technol & Operat Management Area, Ghent, Belgium
[5] Flanders Make, VCCM, Lommel, Belgium
[6] 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
Preventive maintenance; Data pooling; Proportional hazards; Small data; SIMULATION; MODEL;
D O I
10.1016/j.orl.2023.01.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe a data-driven approach to optimize periodic maintenance policies for a heterogeneous portfolio with different machine profiles. When insufficient data are available per profile to assess failure intensities and costs accurately, we pool the data of all machine profiles and evaluate the effect of (observable) machine characteristics by calibrating appropriate statistical models. This reduces maintenance costs compared to a stratified approach that splits the data into subsets per profile and a uniform approach that treats all profiles the same.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [31] Towards Data-Driven Machine Translation for Lumasaaba
    Nabende, Peter
    DIGITAL SCIENCE, 2019, 850 : 3 - 11
  • [32] Data-driven decarbonization framework with machine learning
    Jain, Ayush
    Padmanaban, Manikandan
    Hazra, Jagabondhu
    Guruprasad, Ranjini
    Godbole, Shantanu
    Syam, Heriansyah
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [33] Data-Driven Application Maintenance: Experience from the Trenches
    Misra, Janardan
    Sengupta, Shubhashis
    Rawat, Divya
    Savagaonkar, Milind
    Podder, Sanjay
    2017 IEEE/ACM 4TH INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING RESEARCH AND INDUSTRIAL PRACTICE (SER&IP 2017), 2017, : 48 - 54
  • [34] Data-driven Development and Maintenance of Soft-Sensors
    Abonyi, Janos
    Farsang, Barbara
    Kulcsar, Tibor
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI), 2014, : 239 - 244
  • [35] A Survey on Data-Driven Predictive Maintenance for the Railway Industry
    Davari, Narjes
    Veloso, Bruno
    Costa, Gustavo de Assis
    Pereira, Pedro Mota
    Ribeiro, Rita P.
    Gama, Joao
    SENSORS, 2021, 21 (17)
  • [36] Data-Driven Predictive Maintenance for Gas Distribution Networks
    Betz, Wolfgang
    Papaioannou, Iason
    Zeh, Tobias
    Hesping, Dominik
    Krauss, Tobias
    Straub, Daniel
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2022, 8 (02):
  • [37] Data-driven decision-making for equipment maintenance
    Ma, Zhiliang
    Ren, Yuan
    Xiang, Xinglei
    Turk, Ziga
    AUTOMATION IN CONSTRUCTION, 2020, 112
  • [38] Moving Toward Dynamic and Data-Driven GSI Maintenance
    Wadzuk, Bridget
    Gile, Bridget
    Smith, Virginia
    Ebrahimian, Ali
    Strauss, Micah
    Traver, Robert
    JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT, 2021, 7 (04)
  • [39] Data-Driven Cyber-Vulnerability Maintenance Policies
    Afful-Dadzie, Anthony
    Allen, Theodore T.
    JOURNAL OF QUALITY TECHNOLOGY, 2014, 46 (03) : 234 - 250
  • [40] Data-Driven Approach for Imperfect Maintenance Model Selection
    Liu, Yu
    Huang, Hong-Zhong
    Zhang, Xiaoling
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS), 2011 PROCEEDINGS, 2011,